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The static transmission error is widely recognized to be the principal source of 

vibratory excitation arising from meshing gear pairs. In this report, a generalized 

three-component transmission error of meshing spiral bevel gears i s  defined. Equa- 

tions and computational procedures are developed for predicting the generalized 
transmission error components from their underlying causes. 

First, it is shown that the traditional one-component transmission error is 

incapable of describing the vibratory excitation of spiral bevel gears arising from 
nonconjugate meshing action without making arbitrary, generally unjustifiable assump- 
tions. A three-component generalized transmission error definition is introduced to 

rectify this deficiency. Contact between meshing teeth is assumed to take place in a 

plane surface containing the pitch element. 

exactly satisfy this assumption, and gears manufactured on the crown rack basis 

closely satisfy this assumption. 

Gears with spherical involute teeth 

Equations are derived yielding the three components of the generalized trans- 
mission error in terms of deviations of tooth surfaces from equispaced perfect 

spherical involute surfaces and tooth/gearbody elastic deformations arising from the 
three components of the generalized force transmitted by the gears. It is explained 
how to incorporate these equations into the equations of motion of a gear system. 

Equations are derived for the three components of the generalized force trans- 
mitted by the gears which are valid whenever inertial effects of the meshing gears 

and their supports are negligible. Bearing offsets from the positions occupied by 
the shaft centerlines of perfect spherical involute bevel gears and bearing/bearing 

support flexibilities enter into the computation of these forces. When these forces 

are used to predict the transmission error, one obtains the generalized static 
transmission error. 

For given forces transmitted by the gears, the three components of the general- 

ized transmission error are shown to be stationary with respect to small independent 

variations in the positions of the endpoints of the lines of tooth contact about 

their true values. One of these transmission error components is shown to take on a 

minimum value with respect to these variations, 
this extremum principle is described which is suitable for computing the zone of 

tooth contact in the plane of contact, the three components of the generalized static 

transmission error, and their spectra. 

A computational procedure based on 



IRTBODUCTION 

For some time, lack of conjugate action (refs. 1,2) has been recognized to be 
the principal source of vibratory excitation arising from the meshing action of 

parallel-axis gear pairs (refs. 3-11) .  This lack of conjugate action is approxi- 

mately characterized by the static transmission error (refs. 3 , 4 ) ,  which is loosely 

defined (refs. 7 , 9 )  as the deviation from linearity of the angular position of a gear 
measured as a function of the angular position of the gear it meshes with when the 

gear pair is transmitting torque at low enough speed so that inertial effects are 

negligible. A more precise definition of the static transmission error is given by 
equation (1) of reference 9 and equation ( 2 . 1 )  of this report. 

The static transmission error can be combined with the equations of motion of a 

gear system to predict responses of system elements of interest using the approximate 
method described on p. 1410 of reference 7 and pp. 13-18 of reference 12. An exact 

method for combining the transmission error with the quations of motion is described 
by equations ( 3 . 4 4 )  and ( 3 . 4 5 )  and the accompanying text of this report. 

When characterizing the vibratory excitation of parallel-axis gear systems by 

the transmission error, there is an implied assumption that the shafts in a meshing 
gear pair remain parallel with one another even though they may be moving in relation 
to each other (refs. 7 , 9 , 1 2 ) .  

transmitted from the shafts into the bearings and gear casing - which, in turn, 
vibrates and radiates sound. However, in the case of nonparallel-axis gears, and 
spiral bevel gears in particular, it is shown in the present report in the text 
accompanying equations ( 2 . 3 )  and ( 2 . 4 )  that there would appear to be no physically 

justifiable assumption comparable to the assumption of the shafts of parallel-axis 

gears remaining parallel during their motions. Thus, in the present report, the 

traditional concept of the transmission error is generalized to a three-component 
transmission error. The three components completely characterize the vibratory 

excitation arising from arbitrary relative motions of the two gears of a meshing 
pair - provided that the surface of tooth contact is reasonably well approximated by 
a plane surface passing through the point occupied by the pitch cone apexes of the 
two meshing gears. 

Such motion is necessary for vibratory energy to be 
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The generalization of the traditional one-component transmission error to the 

three-component generalized transmission error very substantially complicates trans- 
mission error analysis and its usage in the equations of motion of gear systems. 

Nevertheless, this generalization is necessary to avoid completely arbitrary assump- 

tions characterizing the angular motions between nonparallel shafts. 

However, the three-component generalized transmission error described herein 

retains another assumption employed in the traditional transmission error char- 

acterization; namely, that all tooth contact takes place in a plane surface. In the 

case of parallel-axis gears, this plane is the base plane (refs. 7-9), sometimes 

referred to as the plane of action. In the case of straight and spiral bevel gears, 

this surface is the base plane associated with spherical involute tooth generation 

(p. 199 of ref. 13) which is discussed in detail in the present report. 
plane also may be regarded as the plane containing the pitch element that is tangent 

to the true surface of tooth contact (pp. 1-4 and 1-16 of ref. 14). The octoid path 

of contact of gears manufactured on the crown rack basis (pp. 494-496 of ref. 15) is 
very nearly linear where actual tooth contact takes place (p. 322 of ref. 1; p. 1-15 

of ref. 14). Thus, it is felt that the very substantial simplification achieved by 

assuming all tooth contact to take place in a plane surface containing the pitch 

element easily justifies this basic assumption. Even utilizing this assumption, the 

analysis required to understand and predict the generalized transmission error is 
very much more complicated than that required to understand and predict the tradi- 

tional transmission error of parallel-axis gears. 

The base 

The goals of the work described in this report have been to carry out an 
analysis of the generalized transmission error arising from spiral bevel gear pairs 

in sufficient detail (1) to gain a physical understanding of the factors that govern 

its magnitude and characteristics, and (2) to predict its magnitude and character- 

istics from these factors it depends on. It is shown that these physical factors 
include : 

(1) deviations of tooth running surfaces from perfect conjugate surfaces 

(2) tooth/gearbody stiffnesses 

(3) deviations of gearshaft bearing centerline positions from the shaft centerline 
positions of perfect conjugate gears 
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( 4 )  bearing/bearing support flexibilities, and 

( 5 )  the shaft input torque. 

Appropriate descriptions of all of the above quantities are required to predict 

the generalized static transmission error of spiral bevel gears. Thus, all of the 
above quantities play important roles in controlling the magnitude and characteris- 

tics of the vibratory excitation arising from spiral bevel gear pairs. 

In addition to the above-listed factors, the contact ratios play an important 

role in smoothing the lack of conjugate action contribution of individual teeth 
(refs. 7-9). Large contact ratios are helpful in reducing the transmission error. 

I 4 



TBE GENERALIZED TRANSWISSZOH ERROR OF SPIRAL BEVEL GEABS 

It is widely recognized (refs. 3-11) that the static transmission error (refs. 

3 , 4 )  describes the principal source of vibratory excitation arising from meshing 
gear pairs. The static transmission error characterizes the deviation from 

~ conjugate action (refs. 13,161 of one gear with respect to its mating gear. 

I angular static transmission error can be defined loosely (refs. 7,9) as "the 
The 

deviation 68 from linearity of the angular position 8 of a gear measured as a 

function of the angular position of the gear it meshes with when the gear pair is I 

1 transmitting a constant torque at low enough speed so that inertial effects are 
~ negligible." In gearing vibration analyses, it generally is more convenient to use 

a lineal equivalent 5 = R 6 8  to the angular static transmission error, where Rb is 

the base circle radius of the gear whose angular transmission error is 68 .  The 
b 

~ 

1 lineal static transmission error describes the deviation from conjugate action as a 
~ linear error in the plane of contact. 

i 
~ for characterizing the vibratory excitation arising from a meshing gear pair of 

j nominal involute design can be given (ref. 9, p. 57) as 

A slightly different definition of the lineal static transmission error useful 

where and +2) are the base circle radii of the two gears (1 )  and (2 )  of the 
pair and &e(') and 

positions of their rigid perfect involute counterparts determined under the condi- 

tion that lateral displacements v(l) and v ( ~ )  of the two gear shafts in the 
direction parallel to the plane of contact are zero (Fig. 1). 

implied by equation (1)* and Fig. 1 is such that the lineal static transmission 

are the angular deviations of gears (1)  and ( 2 )  from the 

The sign convention 

1 error 5 is positive when the deviations from perfect involute teeth are equivalent 

j to removal of material from the running surfaces of the teeth. 
~ 

I In a gearing system in operation, the transmission error from each gear pair in I 
1 the system arising from static and dynamic effects must be compensated for by rota- 
1 tional increments and torsional deformations of the shafting and/or lateral 

1 *Reference to equations in the same section as the equation citation will be made 
' without the section number in the citation. 
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PLANE OF CONTACT 

BASE CYLINDER 

FIG. 1. PAIR OF MESHING PARALLEL-AXIS GEARS. 
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translational displacements v(l) and v(~) of the gear shafts in the direction 
parallel to the plane of contact (Fig. 1). This observation can be expressed (ref. 

7, p. 1410) by the relation 

where the angular deviations 6 and 6 encountered under running conditions 

generally are different from the angular deviations &e( ' )  and 

used in the definition (1) of the static transmission error. 
respectively, 

In utilizing the static transmission error 5 as the vibratory excitation in the 

equations of motion of a gearing system, an equation of the form of equation ( 2 )  is 

written for each pair of parallel-axis gears in the system. Since the lateral shaft 

displacements v(l) and v(~) are required to predict the rate of vibratory energy 
flow i>to the gear supporting structure, accurate prediction of these displacements 
is very important in noise analyses. However, in equation (2) there is an implicit 
assumption that the shafts of gears (1) and (2) remain parallel when laterally 

displaced - i.e., that each displacement v(l) and v(~) is the same at the bearing 
locations at the two ends of the shaft. The simplification of the analyses that 

results from this assumption undoubtedly justifies its use in most cases involving 

parallel-axis gears. 

In the case of bevel gears, however, there does not seem to be a simplifying 

assumption of comparable validity concerning lateral shaft displacements that would 
lead to a single relation analogous to equation ( 2 )  for each gear pair. 

this, we note first that, for either gear (1) or gear (21, the transmission error 5 

in equation ( 2 )  can be compensated for by the term 

angular deviation 

displacement of gear ( e ) .  

constant that is independent of axial location on the gear. In the case of bevel 

gears of nominal (spherical) involute design (ref. 13, p. 199; ref. 16, p. 1281, 

however, the base cylinder of a parallel-axis gear is replaced by a base cone whose 

To see 

6 1 e ( e )  arising from the 

or by the term v(*) arising from the lateral shaft 

For parallel-axis gears, the base circle radius R(*) is a b 

'base circle radius varies in direct proportion t o  axial distance from the base cone 
apex. Thus, a single equation of the form of equation (2) could be made to apply to 
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bevel gears only if one were to assume that the quantity c-v") + v(~) varies 
axially in direct proportion to distance x' from the base cone apex - i.e., that 

where a is a constant. If the transmission error 5 is assumed to be independent of 

axial location x', this assumption would, in turn, require that shaft lateral dis- 

placements v(l) and v(~) vary with axial location x' as 

where 5 and a are independent of x'. It would be difficult to justify such an 
assumption on physical grounds. 

In the present section, the need for such an assumption is removed by defining 

the generalized transmission error for spiral bevel gears of nominal spherical 

involute design. The generalization of the concept of the transmission error 

contained herein removes the need for all assumptions in gearing vibration analyses 

that would constrain the displacements of gear shafts from the positions occupied by 

the shafts of their rigid perfect involute counterparts. 

Kinematics of Involute Spiral Bevel Gear Action 

Geometric Description of Tooth Contact. Straight-tooth and spiral bevel gears 

The motion transmitted by transmit motion between nonparallel intersecting shafts. 
perfect bevel gear pairs is equivalent to that transmitted by perfect right circular 

cones with a common apex in pure rolling contact with no slipping (ref. 13, pp. 125- 
128). The ratio of the instantaneous angular velocities of the two cones about 

their axes is exactly constant. Such cones in rolling contact are referred to as 
pitch cones. 

The teeth of a pair of involute bevel gears may be imagined to have been 
generated utilizing the base cones of the gears. The base cones are smaller than 
and concentric with the pitch cones. 

have the same common apex A (Fig. 2). Let us imagine that the base cone of the 
upper gear in Fig. 2(a) is covered by a thin inextensible membrane which is un- 

wrapped without slipping from the upper gear and rewrapped without slack onto the 

The base and pitch cones of both meshing gears 
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FIG. 2. SPHERICAL BASIS OF BEVEL GEAR ACTION (ADAPTED FROM FIG. 5.18 OF REF. 17 

WITH PERMISSION). 
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base cone of the lower gear as the gears rotate. A point on this membrane traces 
out a spherical involute curve (ref. 13, pp. 197-199) as it is unwrapped from the 

base cone of the upper gear. 

imagined to trace out the running suface of the tooth t as is indicated in Fig. 2(a). 
This process of generating a spherical involute is entirely analogous to the process 

of generating the involute of a circle (ref. 13, p. 163-1671, except that the' 
involute of a circle is generated by unwrapping a membrane from a right circular 

cylinder, whereas a spherical involute is generated by unwrapping a membrane from a 

right circular cone. 

As the membrane is unwrapped, such a point may be 

As the membrane is unwrapped from the base cone of the upper gear shown in Fig. 

2(a) and rewrapped onto the base cone of the lower gear, a point on the membrane 

traces out a trajectory that lies on a spherical surface - as is indicated in the 
figure. 

tion of an involute of a circle, a point on the membrane travels in a plane that is 

perpendicular to the axis of the cylinder. This plane is called the transverse 
plane. Thus, the spherical surface with center at the base and pitch cone apex 

illustrated in Fig. 2 is the involute bevel gear counterpart to the transverse plane 

of involute parallel-axis gears (ref. 17, pp. 56-58). We shall call this spherical 

surface the transverse sphere. 

Conversely, when the membrane is unwrapped from the cylinder in the genera- 

Let us now imagine several concentric spherical sections of the type shown in 

Fig. 2, each located at a different radius from the common apex of the base and pitch 
cones. On each concentric sphere, the teeth of each of the two meshing gears are 

assumed to have been constructed as spherical involutes as described above. 

of points connecting the spherical involute surface of a generic tooth t from one 

sphere to the next determine the shape of the running surface of that tooth. In the 
case of straight-tooth bevel gears, these loci of points are straight lines normal to 

the spheres which originate at the apex of the base and pitch cones. 
bevel gears are the bevel gear counterparts to spur gears. 

bevel gears, the loci of points connecting the surface of tooth t from one sphere to 
the next are curved or spiral lines which also originate at the apex of the cones, 
but which are not generally normal to the spheres. 

The loci 

Straight-tooth 

In the case of spiral 

Any spiral bevel gear may be imagined to have been generated from a straight- 
tooth bevel gear by cutting the straight-tooth gear into an (infinite) number of 
transverse spherical sections and rotating the sections relative to one another about 
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the axis of rotation of the gear. This operation produces the stepped bevel gear 
counterpart (ref. 13, p. 202) to the conceptual generation of a parallel-axis helical 
gear from a spur gear, which is carried out by cutting the spur gear into an 

(infinite) number of sections normal to the gear axis and rotating the sections 

reltive to one another (ref. 13, pp. 190,191). For any shape of tooth spiral, the 
kinematic action of an involute spiral bevel gear is identical in any transverse 

spherical section to that of an involute straight-tooth bevel gear. 

The taut inextensible membrane connecting the base cones of the two meshing 

bevel gears (Fig. 2) is tangent to the conical surfaces of both base cones. The 

locus of points of tangency between each base cone and the membrane is a straight 

line. From the fact that these two straight lines of tangency intersect at the 

common apex of the two base cones it follows that the portion of the taut membrane 
lying between the two base cones is a plane surface tangent to both base cones. 

Furthermore, from the spherical involute construction of the tooth surfaces it 
follows that all tooth contact takes place in this plane of tangency for straight- 

tooth and spiral bevel involute gears. This plane of tangency is called the base 
plane (ref. 14, pp. 1-16). 

At this juncture, it is convenient to replace the taut membrane by a rigid 
circular disk of infinitesimal thickness positioned in the plane of contact with 
center at the common apex of the base cones. The disk lies in the base plane and is 

tangent to both base cones (Fig. 3). As the two gears rotate, the base disk rotates 
about its center without slipping on either of the two base cones. 

portion of the disk that momentarily lies between the lines of tangency to the base 

cones is identical to the motion of the taut inextensible membrane that it replaces. 

The motion of the 

Since all tooth contact takes place in the base plane, all instantaneous lines 

of tooth contact occur in the plane of the base disk. 

involute construction of the tooth surfaces that the circumferential distances 

separating the lines of tooth contact in the base plane do not change as the gears 

rotate. As 
the gears and base disk rotate about their respective axes, the true lines of tooth 

contact and the lines of contact drawn on the base disk exactly coincide in the 
region of the base plane where tooth contact occurs. 

It follows from the spherical 

We may imagine that these lines of contact are drawn on the base disk. 

1 1  
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Figure 3 also shows the addendum cones of the two gears which share a common 
apex with the base and pitch cones. 

of the base plane located between the intersections of the two addendum cones with 
the base plane as is shown in Fig. 3. The two intersections delineating the zone of 

contact are straight radial lines that intersect at the common apex of the addendum, 

base, and pitch cones (Fig. 3 ) .  

Actual tooth contact takes place in the sector 

The bevel gears are located between outer and inner spherical surfaces of the 

type illustrated in Figs. 2 and 3.  If the spherical surfaces shown in Figs. 2 and 3 

are taken to be the outer surface enclosing the two gears, then the zone of tooth 

contact in the base plane is the portion of the sector between the outer and inner 
radii drawn on the base disk in Fig. 3.  

The lines of tooth contact in Fig. 3 are drawn solid within the zone of contact 

and dashed outside the zone of contact. As the gears and base disk rotate about 

their respective axes, the lines of tooth contact affixed to the base disk pass 

through the fixed zone of tooth contact as can readily be imagined with the aid of 
Fig. 3 .  This geometric model of spiral bevel gear action is an exact representation 

of the kinematic behavior of the lines of contact of perfect involute spiral bevel 

I gears. 

Tooth Contact Coordinates in the Base Plane. Concentric circles located at 

1 radii ro + (F/2) and ro - (F/2) on the base disk in Fig. 3 define the outer and inner 
1 radii of the zone of tooth contact in the base plane. 
I 

1 rO. 

i 
Thus, the radial span of the 

I 

zone of tooth contact in the base plane is F and the radial midpoint of this span is 

Let y denote a radial coordinate on the base disk in Fig. 3 defined by 

A y - r  - r ,  
0 

11 where r is the usual radial coordinate with origin at the center of the disk. From 

equation (51, it follows that the origin of y is located at r = ro and that y is 
positive for values of r less than ro. 

I Lines of tooth contact on the base disk in Fig. 3 are designated by index values 

~ j = 0 , 1 , 2 , * * * .  As the gears and base disk rotate about their respective axes, the 
angular position of tooth pair j = 0 relative to the center of the zone of contact is 
designated by 8 ,  which is measured in radians. When the angular position of the line 
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of contact of tooth pair j = 0 at radial location y = 0 exactly coincides with the 

centerline of the zone of contact on the base disk, we have 0 = 0 as is readily 

apparent from Fig. 3. 

Instead of dealing with the angular variable 0, we shall deal primarily with the 

lineal variable 

(2.6) A x = r e ,  
0 

where ro and e are defined above. 
tooth pair j = 0 relative to the zone of contact centerline. Notice from Fig. 3 that 

x is the arc length in the base plane of the circular segment of radius ro between 
the line of contact of tooth pair j = 0 and the centerline of the zone of contact. 

The tooth spacing A on the base disk in Fig. 3 also is measured on the same circular 

arc of radius roo 

Thus, x also determines the angular position of 

Consider the transverse spherical section that passes through the point P shown 
in the zone of contact on the base disk in Fig. 3.  The radius of this spherical 

section is uniquely determined by the coordinate y that describes the position of P 
on the line of tooth contact in the base plane. 

roe illustrated in Fig. 3 ,  the point P determines a unique point located on the 
running surfaces of the two mating teeth. It follows that specification of a pair of 
coordinate values x,y determines a unique point of contact on the running surfaces of 
two mating teeth designated by index j. 

For the particular value of x = 

Let e(’) and e ( 2 )  denote, respectively, the rotational positions of gears (1) 
and (2) about their axes of rotation. Consider infinitesimal increments de, de (1) , 
and in the rotational angles of the base disk and the two meshing gears. From 

the fact that the base disk may be imagined to be rotating without slipping on the 
two base cones illustrated in Fig. 2, it follows that the infinitesimal lineal incre- 
ment dx is related to increments de, de(’), and de(2) by 

(2.7) 

where R,o (1) and 
respectively, that join the base cone generatrices at distances ro from the common 

apex as illustrated in Fig. 2(b). 

are the radii of the base cones of gears (1) and (21 ,  

The integral of equation (7) yields 

14 



Dividing equation (8) by ro and using elementary trigonometric relations arising from 
Fig. 2(b) yields, further, 

which relates the angular positions of the base disk and the two meshing gears using 

only the base cone angles y(') and y ( 2 )  shown in Fig. 2(b). b b 

Since y(') or y r )  can be chosen more or less arbitrarily, it follows with 
reference to the base disk in Fig. 3 that 2nr /A need not necessarily be an integer. 
Thus, once 8 exceeds 2a, the positions of the lines of tooth contact on the base disk 

do not, in general, repeat. 

b 
0 

The Generalized Transmission Error 

We now consider deviation of the kinematic behavior of real bevel gear pairs of 

nominal spherical involute design from the above-described ideal behavior of rigid 

perfect involute gear pairs. The effects considered are those arising from geometric 

I deviations of the unloaded tooth surfaces from perfect spherical involute surf aces 
and from elastic deformations of the teeth and gear bodies caused by tooth loading. 
In the case of parallel axis spur and helical gears, the above effects have been 

characterized (refs. 3-11) by the transmission error, which is a one-component scalar 
representation. 

A more complete characterization of the above effects is provided by a three- 

component version of the transmission error, which we shall call the generalized 

transmission error. Let us consider the real gear counterparts to the perfect 

involute gears illustrated in Fig. 3. For any given value of x or 8 ,  there exists a 

lineal force distribution along each of the lines of contact within the zone of 
contact shown in Fig. 3 which represents the continuous distribution of forces 

transmitted by the pair of teeth in contact. If we neglect the effects of friction 
between meshing teeth, then all such distributed force vectors are normal to the 

tooth surfaces and from involute construction therefore must lie in the plane of 
contact. The resultant total force transmitted by the mesh is the vector sum of all 

15 



forces transmitted by meshing tooth pairs; hence, the total transmitted resultant 

force vector also lies in the plane of contact. 

This resultant force vector can be described by three scalar components - 
namely, two orthogonal force components that lie in the plane of contact, say Wt and 

Wr, and the moment, say T, of the resultant total transmitted force taken about a 
specified point in the plane of contact. 
perpendicular and parallel to the zone of contact centerline, respectively. Moment 

T will be taken about the point located at the mid-radial position y = 0 on the zone 

of contact centerline illustrated in Fig. 3. 

taken as positive when they result in tooth pairs being brought together (rather than 
separated). If the total transmitted resultant force vector is taken to be positive 
for this same condition, then r will be taken as positive when the total resultant 
force vector passes through the zone of contact centerline at a negative value of y = 

ro - r. 

The directions of Wt and Wr will be chosen 

Force components Wt and wr will be 

This sign convention is illustrated in Fig. 4. 

The above-described distributed tooth forces give rise to elastic deformations 

of the teeth and bodies of the two meshing gears. These elastic deformations result 

in displacements of the gear bodies "measured" at the gear shaft centerlines. 

Geometric deviations of the tooth running surfaces of the unloaded real gears from 

the spherical involute surfaces of their perfect involute counterparts give rise to 

additional displacements of the gear bodies at their shaft centerlines from the 

positions of their perfect involute counterparts. For a given value of x or 8 and 

given loading components Wt, Wr, and T, these displacements are characterized by the 
generalized transmission error which describes the composite change in position of 

the bodies of two meshing real gears at their shaft centerline locations from the 

positions of their rigid perfect involute counterparts. 

In the present report, the total deviation of the loaded tooth surfaces of the 
real gears from the surfaces of their rigid perfect involute counterparts is assumed 
to be sufficiently small so that the surface of actual tooth contact can be assumed 
to be the plane of contact of their rigid perfect involute counterparts illustrated 

in Fig. 3.  Thus, in comparing the positions of the loaded real gears with the 
positions of their perfect involute counterparts, we are concerned only with those 

differential position components that lie in the plane of contact. 
the generalized transmission error can be characterized by three displacement 

components - namely, two translation components that lie in the plane of contact and 

It follows that - 
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FIG. 4 .  SCALAR CHARACTERIZATION OF TOTAL FORCE 6 TRANSMITTED BY THE GEAR MESH. THE 

FIGURE ILLUSTRATES INSTANTANEOUS LINES OF TOOTH CONTACT AND ZONE OF CONTACT 
IN PLANE OF CONTACT WHICH IS PLANE OF PAPER. FORCE COMPONENTS SHOWN ARE 
POSITIVE AND ARE ACTING ON THE GEAR TO THE RIGHT. MOMENT T IS POSITIVE WHEN 
PASSES THROUGH ZONE OF CONTACT CENTERLINE AT A NEGATIVE VALUE OF y AS 

SHOWN IN THE FIGURE. 
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one rotation component about a specified axis in the plane of contact. Since these 

components represent small displacements, the rotation component of the generalized 

transmission error can be represented by a vector (ref. 18, pp. 107,108) which is 
normal to the plane of contact. 

Each of these three displacement components of the generalized transmission 

error characterizes the composite displacement of both gears contributing to that 
component. The axis of rotation of the rotation component p of the generalized 

transmission error will be taken to be the point 0 located on the zone of contact 
centerline at the value of y = 0 shown in Fig. 4 .  The rotation p represents thesum 

of the rotations about the axis - 0 of the two meshing gears from the positions of 
their perfect involute counterparts; p is taken to be positive when the portions of 

the teeth in the negative y region of the zone of contact come together more, rela- 

tive to their perfect involute counterparts, than the portions of the teeth in 

positive y region of the zone of contact. The directions of the two translation 

components 5 and 5 of the generalized transmission error are chosen to coincide, 

respectively, with the directions of the corresponding force components Wt and Wr 
illustrated in Fig. 4. Each component 5 and 5 represents the - sum of the dis- 

placements of the two meshing gears from the positions of their perfect involute 
counterparts; 5 and 5 each is taken to be positive when it represents a displace- 

ment of the real gears "equivalent" to that caused by removal of material from the 

tooth surfaces of their perfect involute counterparts. 
Wr, and T are associated with positive contributions of the elastic deformation 
components of 5 t, cr, and p, respectively. 

transmission error components is illustrated in Fig. 5. 

- 

t r 

t r 

t r 

Thus, positive values of Wt, 

The sign convention of the generalized 

Expression for Generalized Transmission Error in Terms of 

Gear Displacements at Shaft Centerlines 

The base cone and plane of contact of a generic bevel gear are shown in Fig. 6 .  

Orthogonal components x1 (*I , xi*), and xi*) designate the three translation components 
of the shaft centerline position of gear ( 0 )  from the position of its rigid perfect 
involute counterpart. 

located at the common apex of the base cones of the involute counterparts of the two 
meshing gears. 

counterpart of gear ( 0 ) .  The xi*) axis lies in the plane of contact. 
directions of the xi*), xi'), and x$*) axes are indicated by the arrows on the ends 

The origin of the x1 (*I , x2 (*I , xi*) coordinate system is 

The xi*) axis coincides with the axis of rotation of the involute 
Positive - 
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FIG. 5. COMPONENTS OF THE GENERALIZED TRANSMISSION ERROR. MUTUALLY APPROACHING 

ARROWS REPRESENT GEAR BODIES COMING TOGETHER RELATIVE TO THEIR PERFECT 

INVOLUTE COUNTERPARTS. DIRECTIONS SHOWN REPRESENT POSITIVE VALUES OF 

<,, c,, AND p .  

THE TWO MESHING GEARS RELATIVE TO THEIR PERFECT INVOLUTE COUNTERPARTS; THESE 

DISPLACEMENTS ARE "MEASURED" AT THE GEAR SHAFT CENTERLINES. 

EACH COMPONENT REPRESENTS THE SUM OF THE DISPLACEMENTS OF 
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CONTACT ZONE OF\,f~&<) Q 

PLANE , h- 
OF 

CONTACT n v.(*) 

BASE CONE 
OF GEAR ( 0 )  

F I G .  6 .  BASE CONE AND PLANE O F  CONTACT FOR A GENERIC BEVEL GEAR P A I R .  COORDINATES 

(*I, i = 1,2,3 MEASURE THE DIFFERENCE I N  P O S I T I O N  OF THE SHAFT ( 0 )  

xi pi 
CENTERLINE OF GEAR ( 0 )  FROM THE P O S I T I O N  OF ITS R I G I D  PERFECT INVOLUTE 

COUNTERPART. S I G N  CONVENTIONS FOR THE xi*) AND p i ’ ) ,  i = 1,2,3 ARE 

ASSOCIATED WITH THE GEARS SHOWN I N  F I G .  3 AND DESCRIBED I N  THE F I R S T  TWO 

ROWS OF TABLE 1. 
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of the coordinate axes. 

coordinate system with respect to the location of the base cone of the rigid perfect 
involute counterpart of gear ( 0 ) .  The base cone of the mating gear lies to the left 

of the base cone shown in Fig. 6 .  

These designations completely define the x1 ( 0 )  , x2 ( 0 )  , xp 

In addition to the three translation components x[*), x$*), and x3(*), three 

rotation components are required to describe arbitrary displacements of a real gear 
from the position of its perfect involute counterpart. 

position always are very small, the rotation components can be treated as vectors 
(ref. 18, pp. 107,108). We shall take the three rotation components to be the 

Since such changes in 

(small) rotations p l  ( * )  , p2 (*I, and p i ’ )  about the base cone axes xl(*), xi*), and x3 ( 0  1 , 
respectively. 
p l ( * )  about this axis produce displacements at the plane of contact that are normal to 

that plane. Such displacements contribute nothing to the generalized transmission 

error, as indicated earlier. Thus, we shall be concerned only with the small rota- 

Since the xi” axis lies - in the plane of contact, small rotations 

tions p $ * )  and p i * )  about the axes xi.) and x3 ( *  ) . 
To obtain the contributions of x{*), xi*), and x$” to the generalized trans- 

mission error, we require the contributions of these translations to the components 
5, and 5, in the plane of contact shown in Fig. 5. 
obtained by transforming xi’), x2(*), and xi. 
zl, z2, 23 illustrated in Fig. 6 .  

plane of contact; the 23 axis coincides with the zone of contact centerline shown in 

Fig. 5. This transformation is carried out by two rotations - first, a rotation 
about the x!” axis through the base cone angle y ( * )  yielding displacements in 

the yl, y 2 ,  y3 coordinate system followed by a rotation about the y2 axis through the 

angle v ( *  

The resulting displacements along the zl axis contribute to 5 
’ displacements along the 23 axis provide the contribution of gear (.) to 5 

Displacements along the z2 axis are normal to the plane of contact and therefore do 

not contribute to the generalized transmission error. 

These contributions can be 
into the rectangular coordinate system 

I The plane containing the z1 and 23 axes is the 

I 

b 

yielding the desired displacements in the zl, z2, 23 coordinate system. 
and the resulting t 

ro 

The only rotation components contributing to the generalized transmission error 

, are those components about the z2 axis, since (small) rotations about the zl Or the 23 
’ axis provide displacement components at the plane of contact that are normal to that 
plane. 

to the generalized transmission error rotation component p; 

Small rotations p i * )  and p3(*) both contribute to the contribution of gear (.) 

in addition, p i * )  and 
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p i o  
tion component in the z1 direction that passes through the 2 3  axis a distance ro from 

the base cone apex (Figs. 5 and 6). 

both contribute to i+, since ct is the generalized transmission error transla- 

The generalized transmission error components represent the sums of the 

contributions, as described above, from each of the two meshing gears. Let us 
designate the generalized transmission error by a column matrix or vector 

(2.10) 

and the rotational and translational components of the shaft centerline of gear ( 0 )  

measured from the position of its rigid perfect involute counterpart by the 
generalized displacement column matrix or vector 

cl(*)(x)  4 (2.11) 

( 0 )  = (1) or (2), as appropriate. 
obtained from the generalized displacements q(')(x) and q(2)(x) of the two meshing 

gears by the matrix multiplications and summation 

It is shown in the appendix that ~ ( x )  can be 

where T")? ( e )  = (1) or (21, is defined by 

(2.12) 
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9 

(2.13) 

where c and s are abbreviations (ref. 18, p. 106) for cosine and sine operations, 

respectively, on the angles yb ( * )  and v(*). These angles and ro are illustrated in 
Fig. 6. 

The terms in the bottom row in the right-hand side of equation (13) have two 
The gear pair signs. 

shown in Fig. 3 is represented by the first line in Table 1. If gear (2) in Fig. 3 

becomes the driver rotating clockwise, the resulting configuration is represented by 
the second line in Table 1. 

possible gearing configurations. 

each of the two gears shown in Fig. 7. 
by the third line in Table 1. 

counterclockwise, the resulting configuration i s  represented by the fourth line in 

Determination of the appropriate sign is given in Table 1. 

The gear pair shown in Fig. 7 illustrates the other 
Figure 8 displays the coordinate system used for 

The gear pair shown in Fig. 7 is represented 
If gear (2) in Fig. 7 becomes the driver rotating 

' Table 1. Definitions of spiral directions are the same as those of screw threads 

(ref. 19, p. 241). 

mathematical definition of the generalized transmission error for spiral bevel gear 

pairs. 

Equations (10) through (13) and Table 1 can be regarded as the 
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Table 1 
rules listed below. 

configurations of spiral bevel gear pairs. 

of base cone. 
the 3rd and 4th lines are associated with Figs. 7 and 8. 

The upper or lower signs in the third row in equation (13) are chosen by the 
Each full line in the table represents one of the four possible 

Gear motions are observed from large end 

The first two lines in the table are associated with Figs. 3 and 6 and 

Upper Sign 

Driver clockwise, 
left-hand spiral 

Follower counterclockwise, 
left-hand spiral 

Driver counterclockwise, 
right -hand spiral 

Follower clockwise, 
right-hand spiral 

Lower Sign 

Follower counterclockwise, 
right-hand spiral 

Driver clockwise, 
right-hand spiral 

Follower clockwise, 
left-hand spiral 

Driver counterclockwise, 
left-hand spiral 
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I i I 
BASE DISK I I 
PLANE OF CONTACT / 

I I 
BASE i I I 

I 
I 

ADDENDUM 
CONE 
PITCH 
CON E 

ADDENDUM 
CONE 

PITCH 
CONE 

BASE 
CONE 

1 FIG. 7. ALTERNATIVE GEARING CONFIGURATION TO THAT SHOWN IN FIG. 3.  CONFIGURATION 
I SHOWN ABOVE IS ASSOCIATED WITH BASE CONE AND PLANE OF CONTACT CONFIGURATION 

SHOWN IN FIG. 8 AND DESCRIBED IN THE LAST TWO ROWS OF TABLE 1. (LOWER 

FIGURE ADAPTED FROM FIG. 5.18 OF REF. 17 WITH PERMISSION.) 
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F I G .  8. BASE CONE AND PLANE OF CONTACT FOR BEVEL GEARS SHOWN I N  F I G .  7 AND DESCRIBED 
( *  1 I N  THE LAST TWO ROWS OF TABLE 1. COORDINATES xi* AND pi , i = 1,2 ,.3 

MEASURE THE DIFFERENCE I N  P O S I T I O N  OF THE SHAFT CENTERLINE OF GEAR ( 0 )  FROM 

THE POSITION OF I T S  R I G I D  PERFECT INVOLUTE COUNTERPART. NOTE ESPECIALLY THE 

i=1,2,3. ABOVE CONFIGURATION I S  THE MIRROR SIGN CONVENTION FOR P O S I T I V E  

IMAGE OF F I G .  6. 
pi’ 
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USE OF THE GENERALIZED TRANSHZSSION ERROR IN TBE 
EQUATIONS OF MOTION OF GEAR SYSTEHS 

In order to write the equations of motion of a gear system, one needs 
mathematical expressions for all forces and moments acting on each gear and each 

pinion in the system. 
shafting displacements and those transmitted by the teeth of the mating pinion or 

gear. 

be written down in a relatively straightforward manner. 

methodology is developed for incorporating the forces and moments transmitted by the 

teeth of pairs of meshing gears into the equations of motion of gear systems. 

effects of the nonuniform transmission of motion between meshing gears arising from 
shafting translational and rotational displacements, tooth and gear body elastic 

deformations, and deviations of the tooth running surfaces from perfect involute 
surfaces are included in this methodology. 

Such forces and moments include those arising from bearing and 

Mathematical expressions for the bearing and shafting forces and moments can 
In the present section, a 

The 

For pairs of rigid perfect parallel-axis (refs. 7-9) and bevel involute gears, 
all tooth contact takes place in a fictitious plane called the plane of contact or 

base plane. 

forces transmitted by the teeth lie normal to the tooth surfaces, and, therefore, in 
the plane of contact (ref. 7) .  It follows that the resultant total force transmitted 
by all teeth simultaneously in contact can be described by three scalar components - 
namely, two orthogonal force components that lie in the plane of contact and the 

moment of the resultant total transmitted force taken about a specified point in the 
plane of contact. These three components are the components of the generalized mesh 

force vector (Fig. 4). 

If the forces of friction between the teeth are neglected, then the 

In studying the vibratory excitation arising from a pair of meshing gears, we 

must be concerned with the unsteady behavior of the forces transmitted by the 
teeth. These unsteady forces are dependent on the tooth and gear body elasticity and 

the dynamic parameters of the gear system (inertias, stiffnesses, etc.) and therefore 
must be regarded as unknowns. In this section, a relationship is derived that 

relates the three-component generalized mesh force vector that describes these 

unsteady forces, the three-component generalized transmission error vector (Fig. 5) 
that describes the nonuniform transmission of motion, a three-component vector that 

describes the geometric deviations of the tooth running surfaces from perfect 

involute surfaces, and an appropriately defined mesh stiffness matrix. Combining 
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this relationship with the expression (2.12) for the generalized transmission error 

vector yields a matrix equation which is interpreted as an equation of constraint 

that relates the unknown vibratory displacements of the two meshing gears, the 

unknown mesh forces, and the geometric deviations of the tooth running surfaces from 
perfect involute surfaces which are assumed known. 
generalized transmission error vector, the generalized mesh force vector, and the 

geometric deviations of the tooth running surfaces from perfect involute surfaces is 

worked out in detail for spiral bevel gears of nominal (spherical) involute design 
and completely arbitrary spiral angle (19, p. 241). Earlier analyses along the same 

lines utilizing the one-component transmission error (refs. 3-12, 20) have been 
carried out for spur gears in refs. 6 and 20 and for helical gears in refs. 7 and 9 .  

The relationship between the 

Equations for Generalized Transmission Error in Terms of Mesh 
Loading and Geometric Tooth Surface Deviations 

We now derive a set of equations for the generalized transmission error of 
spiral bevel gears that involves the mesh loading components illustrated in Fig. 4 
and the geometric deviations of the tooth running surfaces from perfect spherical 

involute surfaces. This material is an extension to the three-component generalized 

transmission error for spiral bevel gears of a much simpler derivation (ref. 7, pp. 
1412, 1413) of the one-component transmission error for helical gears. 

Force Deformation Relations. In the previous section, it was pointed out with 
the aid of Fig. 3 and equation (2.6) that specification of the pair of coordinate 

values x,y determines a unique point of contact on the running surfaces of two mating 
teeth designated by index j. Let u(*)(x,y) denote the elastic deformation of the 
running surface of tooth j of gear ( 0 )  under such a contact point, ( 0 )  = 1 or 2. The 

direction of u(:)(x,y) is taken normal to the tooth surface and, therefore, in the 
plane of contact normal to the line of contact, as can be envisaged with the aid of 

Fig. 3 ;  u(*)(x,y) is defined to be positive when it is "equivalent" to removal of 
material from the running surface of the tooth. 
negative. Let u 
in contact - i.e., 

nj 

nJ 

nj 
Thus, u(*)(x,y) always is non- 

nj 
(x,y) denote the sum of the elastic deformations of two mating teeth 

nj 



and let K(')(x,y) denote the local stiffness of tooth pair j per unit length of line 
of contact as defined in Appendix B, where subscript n again denotes that these 
quantities refer to deformations normal to the common point of tangency of the two 

mating teeth which is located by the coordinate values x,y. The superscript ( e )  on 

K(' )(x,y) will be used to distinguish the different definitions of local tooth-pair 

stiffness that are established in Appendix B and used later in this section. Then 

nj 

nj 

is the normal force increment transmitted by the differential length dll of the line of 
contact of tooth pair j as illustrated in Fig. 9. From Fig. 9 ,  we can see that 

hence, 

n dW 

The angle $,(y) is the base plane spiral angle (ref. 19,  p. 241)  illustrated in Fig. 9 

which can vary in a rather general, but specified, way as' a function of y = ro - r. 

Let dW (x,y) be resolved into tangential and radial components dW 

dW (x,y) that are perpendicular and parallel, respectively, to the zone of contact 

centerline as shown in Fig. 9 .  From the figure, it is readily seen that the differen- 

tial tangential and radial forces are related to the differential normal force by 

(x,y) and nj t j 

rj 

and 
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% 

\ OF TOOTH PAIR j 

G. 

F I G .  9. RESOLUTION O F  DIFFERENTIAL NORMAL FORCE INCREMENT dW .(x,y) INTO COMPONENTS 
nJ 

dW (x,y) and dW (x,y) PERPENDICULAR AND PARALLEL TO ZONE O F  CONTACT 

CENTEEUINE. FOR LOCATION OF ZONE O F  CONTACT I N  PLANE O F  CONTACT, SEE F I G .  3.  
t j rj 
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where ;x.(x,y) is the angle in the base plane between the zone of contact centerline 
and the radial line passing through the differential force element with vertex at the 

base cone apex as illustrated in Fig. 9. 
force transmitted by tooth pair j to the tangential and radial components W,(X) and 

wr(x) of the total force transmitted by the mesh are obtained by (Stieltjes) 

integrations of dWtj and dWrj, respectively, over the total line of contact of tooth 
pair j: 

J 

The contributions Wtj(x) and Wrj(x) from the 

YB 

YA 
Wtj(x) = I dW (x,y) ( 3 . 7 )  ti 

and 

where YA and yB denote the endpoints in the coordinate y of the line of contact of 
tooth pair j. 

Let h denote the distance measured perpendicular to dW (x,y) between the zone of nj 
contact center 0 and the line of action of the differential normal force dW 
illustrated in Fig. 9. Then, using the sign convention for moments illustrated in 

Fig. 4 ,  it follows that the contribution T (x) from the force transmitted by tooth 

pair j to the total moment T(X) about the zone of contact center 0 is 

(X,Y> as nj - 

j 

The tangential and radial components Wt(x) and Wr(x) of the total force transmitted by 

the mesh and the total moment T(X) about the point - 0 illustrated in Fig. 4 are given 
by the Sums of W (x), W (x), and T (x) over all tooth pairs in contact: 

tj rj j 

( 3 . 1 0 )  

( 3 . 1 1 )  

(3 .12 )  



Inserting equations (4) and (5) into equation (7) gives 

and inserting equations (4) and (6) into equation (8) gives 

(3.13) 

(3.14) 

where K(t)(x,y) and K(')(x,y) are defined in Appendix B. 

that 

In Appendix C ,  it is shown 
nj nj 

Finally, inserting equations (4) and (15) into equation (9) yields 

(3.16) 

where K(!)(x,y) also is defined in Appendix B. 
nJ 

Force-Transdssion Error Relations. Let TI(. )(x,y), ( 0  )=1 or 2, denote the 
nj 

geometric deviation of the unloaded running surface of tooth j of gear ( 0 )  from the 

surface of its perfect spherical involute counterpart at the point of contact on the 
surface determined by the pair of coordinate values x,y. The deviation q(:)(x,y) is 

measured in a direction normal to the tooth surface and, therefore, in the plane of 

contact normal to the line of contact; q(')(x,y) is taken to be positive when it is 
equivalent to removal of material from the surface of its perfect involute counter- 

part. 

contact - i.e., 

nJ 

nj 

Let TI (x,y) denote the sum of the geometric deviations of two mating teeth in 
nj 
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(3.17) 

which is the geometric deviation counterpart to the corresponding relation (1) that 

applies to elastic deformations. Let 5 

tooth pair j defined in the same direction and with the same sign convention as 

%j(X,Y) and ?Inj(X,Y). 
elastic deformation u 

the point of contact determined by x,y: 

(x,y> denote the local transmission error of 
nj 

The local transmission error is defined as the sum of the 

(x,y) and the geometric deviation (x,y) of the tooth pair at 
nj nj 

(3.18) 

In Fig. 10, the local transmission error 5 (x,y) of tooth pair j is shown 
nj 

resolved into local tangential and radial components 5 - ap and 5 - bp that are 
perpendicular and parallel to the zone of contact centerline, respectively. 

convention of the transmission error components shown in Fig. 10 coincides with the 
displacement of the gear on the left-hand side of the zone of contact shown in Fig. 5 .  

The local tangential component 5 

tangential and rotational components 5 and p that are illustrated in Fig. 5 ;  the 
local radial component 5 - bp contains contributions from the global radial and 
rotational components 5 and p also shown in Fig. 5. From Fig. 11, one can readily 
show that the distances a and b (in Fig. 10) of the contact point from the center 0 of 
the zone of contact are 

t r 
The sign 

- ap contains contributions from the Blobal t 

t 

r 

r 
- 

(3.20) b = (ro-y) sinA (x,y) 
j 

Thus, the local tangential and radial components of the transmission error are 

Recognizing the geometric similarity between the force resolution in Fig. 9 and the 

local transmission error resolution in Figs. 10 and 11, it follows from equations (5) 
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\ LINE OF CONTACT 
\ /- OF TOOTH PAIR j 

2-- 0 0 

0 
0 

\ 

\ 
FIG. 10. RESOLUTION OF LOCAL TRANSMISSION ERROR 5 (x,y) INTO LOCAL TANGENTIAL AND 

nj 
RADIAL COMPONENTS ct-ap AND < -bp PERPENDICULAR AND PARALLEL TO ZONE OF 

CONTACT CENTElUINE, RESPECTIVELY. DISPLACEMENTS SHOWN COINCIDE WITH MOTION 
OF GEAR ON THE LEFT-HAND SIDE OF THE ZONE OF CONTACT SHOWN IN FIG. 5. 

r 
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' \\ 

FIG. 11.  GEOMETRY OF POINT OF CONTACT LOCAL TRANSMISSION ERROR AND ZONE OF CONTACT 
ORIGIN 0. - 
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and ( 6 )  that the tangential and radial components of the local transmission error are 
related to the normal component by 

(3.23) 

(3.24) 

It is possible, now, to express the (unknown) elastic deformation component 

u (x,y) in equations (13), (14), and (16) in terms of the geometric deviations 

11 

components ~(x), ct(x), and cr(x). 

nj 

nj 
(x,y) of the tooth running surfaces and the three generalized transmission error 

Solving equation (18) for U .(x,y) gives nJ 

Multiplying equation (25) by cos[$ (y) - Xj(x,y)] and combining the resulting 

expression with equations (21) and (23) to eliminate 5 (x,y) gives 
b 

nj 

Multiplying equation (25) by sin[Jlb(y) - X (x,y)] and combining the resulting 

expression with equations (22) and (24) to eliminate 5 (x,y) gives 
nj 

Dividing equation (26) by  COS[$^(^) - X (x,y)] gives 
j 

Finally, substituting equations (26), (27), and (28) into equations (161, (131, and 
(14), as required, yields the desired expressions for T (XI, W (XI, and w (XI: 

j tj r j  
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and 

Let us define 

(3.31) 

(3.32a) 

(3.32b) 
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(3.32d) 

(3.32f) 

(3.321) 
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The above notational convention is easy to remember once it is understood. Each of 
the above fifteen definitions is an integral over the full line of contact of tooth 

pair j. 
side - since the tilde has the approximate form of an integral s i g n  (rotated 90"). 
The fact that the integration is taken over the line of contact of tooth pair j is 

represented by the last of the subscripts, j, on the symbol the tilde has been placed 
over. The first eleven of the definitions are regarded as weighted integrals of the 

stiffness K(*)(x,y) and the remaining four are regarded as weighted integrals of the 

deviation q 

over. The subscripts following these symkiols represent the weighting functions in the 

integrals, where c-1 represents sec = cos -1, s represents sin, c represents cos, 1-c 

represents 1-cos, and K represents K(*)(x,y). Each of the fifteen integrals is a 

function of x = roe, which accounts for the symbol x in the arguments on the left-hand 
sides. The remaining symbols after the semicolons in the arguments on the left-hand 

sides represent the arguments of the subscripted trigonometric functions, in the same 

order as the subscripts, with the last argument on the left-hand side after the 
semicolon in each of the definitions representing the argument of the last subscripted 

function before the j. Each superscript ( 0 )  in the left-hand side represents the 

superscript ( 0 )  in K(')(x,y) in the right-hand side, ( 0 )  = (t), 

(r), or (PI, as appropriate. 

The integration is represented by the tilde over the symbols on the left-hand 

nj 

nj 
(x,y), which explains the symbols that the tildes have been placed 

nj 

nj 

By utilizing the definitions (32a) - (3201, equations (291, (301, and (31) can be 
expressed as 
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and 

(3.33) 

(3.34) 

(3.35) 

The t o t a l  moment ~ ( x )  and forces  Wt(x) and W,(X) t ransmi t ted  by t h e  mesh are obtained 

by summing equations (33),  (34) ,  and (35) over a l l  t oo th  p a i r s  j i n  contac t ,  as 

ind ica ted  by equations ( l o ) ,  ( l l ) ,  and (12). If t h e  sums over j of t h e  q u a n t i t i e s  

defined by equations (32a) - (320) are denoted by t h e  same symbols with t h e  subsc r ip t s  

j t h a t  are not included within t h e  parentheses omitted - i.e., 
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(3.36a) 

(3.36b) 

(3.360) 

then the total moment and forces transmitted by the mesh are expressed in a form 
identical to equations (331, (341, and (35) with the subscripts omitted as indicated 

in equations (10) - (12) and (36a) - (360). 
cr(x) in the resulting equations can be factored out to yield the following set of 
equations for the generalized transmission error components: 

The coefficients of ~(x), ct(x), and 

(3.37) 

(3.38) 

41 



and 

(3 .39 )  

Equations ( 3 7 )  and ( 3 8 )  are a pair of simultaneous linear algebraic equations for 

the rotational and tangential components, ~ ( x )  and 5 (x), of the generalized tran- 
smission error illustrated in Fig. 5. The coefficients of the unknowns defined in 

equations (32a) - (32k)  are functions of the gear mesh geometry and the tooth-pair 
stiffnesses K(*)(x,y), ( 0 )  = (t) or (VI . 
terms T(X) and W (XI illustrated in Fig. 4 and the stiffness weighted geometric 

deviations of the tooth running surfaces from perfect involute surfaces defined in 

equations ( 3 2 i )  - (320) .  

equation for the radial component 5 (x) of the generalized transmission error in terms 

of p(x) and the forcing and geometric deviation terms that are written on its right- 
hand side. 

t 

The right-hand sides contain the forcing 
nj 

t 

Equation ( 3 9 ) ,  the third in the set, can be regarded as an 

r 

Use of Generalized Transmission Error in Equations of Motion 

The set of equations ( 3 7 )  - ( 3 9 )  for the generalized transmission error 
components ~ ( x ) ,  ct(x), and 5 (x) can be written in matrix form as r 

where ~ ( x )  is the generalized transmission error vector defined by equation ( 2 . 1 0 ) ,  

W(x) is the generalized mesh force vector 

( 3 . 4 1 )  

and 

the tooth surfaces from perfect involute surfaces: 

is the vector that describes the stiffness weighted geometric deviations of 
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(3.42) 

The matrix K(x) is the 3 x 3 element coefficient matrix readily written down from the 
left-hand sides of equations (37) - (39). 

Let us define the inverse C(x) of the mesh stiffness matrix K(x) by 

C(X) 4 Irl(X) . (3.43) 

An expression for C(x) is derived in Appendix D. 
R1(x) gives 

Premultiplying equation (40) by 

where the definition (43) has been used. 
(2.12) and (44) yields 

Equating the right-hand sides of equations 

or 

which is the final result. 

Each gear and pinion in a simple or complex gearing system possesses 6 degrees- 
These 6 degrees-of-freedom can be taken to of-freedom when modeled as a rigid body. 

be the xi*) and p ( * ) ,  i = 1,2,3 illustrated in Figs. 6 or 8 ,  as appropriate. The 
differential equations of motion of each such gear or pinion can be expressed in terms 

of these 6 coordinates and their first and second temporal derivatives, the elastic 

restoring forces and moments of the bearing supports which depend on these same 6 
coordinates, and the shafting forces and moments that also may depend on the compar- 
able coordinates that describe the position of a neighboring gear or pinion. 

i 

Tn 
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addition to these elastic forces, the three components of the mesh force vector 

W, equation (41) and Fig. 4, also act on the gear. The temporal variations of the 

components of the mesh force vector W depend on the dynamic properties of the gearing 
system (masses, stiffnesses, etc.); therefore, they must be treated as dependent 

variables or unknowns whose time-dependent behavior also must be obtained from solu- 

tion of the equations of motion of the gearing system. 

Treatment of the three components of W as unknowns requires the addition of three 
equations to the equations of motion of the gearing system for each pair of meshing 
gears in the system. 

these three additional equations. If, for each pair of meshing gears in the system, 
we consider the components of W as three additional generalized coordinates (ref. 21, 
p. 121, then the scalar components of equation (45b) have the form of holonomic 
constraints (ref. 21, pp. 10-14; ref. 22, pp. 24-27). When a matrix equation of the 

form of equation (45b) is included for each pair of meshing gears in the system, it is 
evident that the vibratory excitation of the system arising from each gear pair is a 

displacement form of excitation provided by the three components of the vector 

C(x)nK(x)together with the three components of the vector C(x)U(x) that provide a 
parametric excitation of the system through the periodic dependence on x of the matrix 

The three scalar components of the matrix equation (45b) are 

C(d 

Denoting the nominal angular velocity of gear ( 0 )  by u(*) rad/sec, it follows 
from equation (2.8) that 

(3.46) 

where e:*) and t denote appropriate initial conditions. From equation (46) it 
follows that C(x) can be regarded as a function of time t. 
constraint (45b) has time-dependent coefficients which sometimes are referred to as 

rheonomic constraints (ref. 22, p. 32). When included as part of the equations of 
motion of a gearing system, it seems appropriate to refer to the matrix equation (45b) 
as the mesh constraint equation. However, from a physical perspective, equation (45b) 

is a geometric compatibility relation (ref. 23, pp. 9 9 ,  100) involving the gear axes 
vectorial displacements q(')(x) and q(2)(x), the elastic deformations of the gear 

teeth and bodies characterized by the matrix product C(x)W(x), and the geometric 

0 

Hence, the equation of 
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deviations of the tooth running surfaces from perfect involute surfaces characterized 
by the matrix product C(x>nK(x) - as is readily understood from equations (2.11) and 

(2.12), and equations (44) and (45) above. 
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EPFECTS OF BEARING OFFSET AND IPLEXIBILITY ON THE 
MESH FORCE DISTRIBUTION 

In the preceding section, a method is outlined for determining the values of the 
three generalized force components Wt, Wr, and T. This method is valid for elastic 
teeth of modified spherical involute design if the true surface of tooth contact is 
reasonably well approximated by a plane surface passing through the common apex of 

the base and pitch cones of the meshing bevel gears. The method outlined in the text 
following equation (3.45b) includes contributions to Wt, wr, and 'I from the inertial 

I forces of the gear bodies arising from their transverse and axial vibratory motions, 

and contributions from the torsional vibratory motions of the gears which depend on 

the torsional dynamic properties of all gearing elements in the system. 

In the present section, equations are derived for the generalized mesh force 

components wt, w,, and T under the assumption that the gear body inertial forces and 
the inertial forces associated with the "effective" bearing mass are negligible in 

comparison with the bearing/bearing support elastic reaction forces. 
of these generalized mesh force components are used in equations (3.41) and (3.44), 

the value of the generalized transmission error determined therefrom as a function of 

the rotational positions of the gears is the generalized static transmission error. 

However, contributions from the torsional vibratory motions of the gears are readily 

taken into account when using the equations derived herein, since the component of 

mesh torque coinciding with the gear axis is an "input" to the equations for Wt, Wr, 
and 'I. The temporal variations of this torque component can be determined from the 
torsional equations of motion of the gearing system. 

I 

When the values 

I 

I 

In the subsection below, the generalized mesh force vector is transformed into a 
coordinate system suitable for use in writing the equations of motion of the gear 

bodies. 
equation (3.45b) which takes into full account the inertial forces associated with 

transverse and axial gear body motions. 

~ 

This transformation is useful in applying the methodology outlined following 

~ 

Expression for Mesh Forces in Gear Coordinates 

-b 
The scalar components Wt, Wr, and T of the resultant total force W transmitted 

by the gear teeth can be represented by the generalized mesh force column matrix or 
vector defined by equation (3.41) and illustrated in Fig. 4, 

I 

~ 

~ 
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According to Newton's third law, this system of forces acts on each member of the 
pair of meshing spiral bevel gears. 

We require a representation in "gear coordinates" of the mesh force system Wt, 
and ' acting on a generic spiral bevel gear (-).  These gear coordinates are 

defined by 
Wr 9 

provided by the generalized displacement column matrix or vector q( .  

equation ( 2 . 1 1 1 ,  

where each p ( * ) ,  i = 1,2 ,3  represents the (small) rotational deviation about the 
base cone coordinate axis x ( * )  of the position of the shaft centerline of gear (. ) 

from the position of its rigid perfect involute counterpart. Orthogonal coordinates 

i 

i 

( * I  represent translations of the shaft centerline position of , and x 3 
( - 1  ( -1  

1 s X 2  X 

gear ( 0 )  from the position of its rigid perfect involute counterpart. This six 
degree-of-freedom system of coordinates is illustrated in Fig. 12 or its mirror 

image Fig. 1 3 ,  whichever is appropriate. 

We can associate a generalized force column matrix or vector 
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ZONE OF 

PLANE 

BASE CONE 
OF GEAR ( 0 )  

r 

( 0 )  F I G .  12. GEAR COORDINATE SYSTEM CONSISTING OF ROTATIONS pi  

TRANSLATIONS xi 

, i = 1 , 2 , 3  AND 
, i = 1,2,3 REPRESENTING DEVIATIONS OF P O S I T I O N  OF GEAR ( 0  1 

( 0 )  FROM P O S I T I O N  OF I T S  R I G I D  PERFECT INVOLUTE COUNTERPART. CARTESIAN 

COORDINATES zi, i = 1,2 ,3  ARE ORIENTED WITH RESPECT TO PLANE OF CONTACT 

WHICH I S  zl, z3 PLANE WITH z3 A X I S  PASSING THROUGH ZONE OF CONTACT CENTER 

0. FORCE SYSTEM LOCATED AT 0 SHOWS FORCES EXERTED ON GEAR ( 0 )  BY ITS 

MATING GEAR WITH MOMENT T OF RESULTANT TOTAL FORCE TAKEN ABOUT 0. FORCE 

SYSTEM LOCATED AT BASE CONE APEX SHOWS EQUIVALENT FORCES WITH MOMENT 

T I +  rowt O F  RESULTANT TOTAL FORCE TAKEN ABOUT BASE CONE APEX. 

REPRESENTATION OF MOMENTS T and T + rowt I S  GOVERNED BY RIGHT-HAND RULE. 

- - 
- 

VECTOR 



F I G .  13. MIRROR IMAGE OF FIG.  12. SEE CAPTION OF FIG.  12.  HERE, VECTOR 

REPRESENTATION OF MOMENTS T and T + rowt I S  GOVERNED BY LEFT-HAND RULE. 
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with the generalized displacement vector q(-) given by equation (2). 
ized force vector Q(') has three moment or torque components T 
three force components F 
forces normally associated with Lagrange's equations. 

The general- 
( * )  , i = 1,2,3 and 
i 

These components are - not the generalized ( - 1  , i = 1,2,3. 
i 

( *  
i i 

The directions of positive p ( * I ,  i = 1,2,3 are illustrated in Fig. 12 or 

Each T ( * I ,  i = 1,2,3 is the component of torque taken about the axis x . 
Positive values of the T ( * I  correspond to positive values of the (small) rotations 

i ( * I .  
pi i 
Fig. 13, as appropriate. From Figs. 12 or 13, we may conclude that each torque 

component T ('I is taken about the point occupied by the base cone apex. 
12, one may observe that for each i = 1,2,3 the relationship between the sign of 

, and hence Ti(*), and the sign of x 

From Fig. 
i 

is governed by the well-known right- ( *  1 
pi i 
hand rule; whereas, from Fig. 13, which is the mirror image of Fig. 12, the 

i i i 
relationship between the sign of p ( * I ,  and hence T ( *  I, and the sign of x ( * I  is 
governed by the left-hand rule. This difference in sign convention between Figs. 12 

and 13 is a necessary consequence of the mirror image property. 

( 0 )  Each F , i = 1,2,3 in equation (3) is the component of force in the direction 
i 
Positive values of the F (*I correspond to positive values of the of x ( * I .  

displacements x ( ). 
i i 

i 

For a generic spiral bevel gear ( a ) ,  it is shown in Appendix E that the 
generalized force vector Q(') in gear coordinates is related to the generalized mesh 

force vector W by the matrix transformation 

- ( * I  where T is the transpose of the matrix T(-) defined by equation (2.13) and Table 1, 

0 

( *  
roqb 

( -1  -r sy 
o b  

( 0 )  'CV 

- 
0 

0 

0 

( *  1 fsv 
(4.5) 
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where c and s are abbreviations (ref. 18, p. 106) for cosine and sine operations, 

respectively, on the angles yb (*I and v 

Figs. 12 and 13. Determination of the appropriate sign for the terms in the third 

column of %(*) is governed by the rules for determination of the appropriate sign for 
the terms in the third row of T'O) that are described in Table 1. 

tion of the gearing configurations described in Table 1 may be found following 

equation (2.13). 

( 0  1 These angles and ro are illustrated in 

Further explana- 

The transformation provided by equations (4) and (5) yields the three torque 
( * )  and three force components F (*I, i = 1,2,3 associated with the components T 

(*I and three displacements x ( * I ,  i = 1,2,3 with positive torques three rotations p 

and forces associated with positive rotations and displacements, respectively. These 

are the torque and force components applied to gear ( 0 )  by its mating gear expressed 

in the gear coordinate system defined by equation (2 )  and Figs. 12 or 13, as 

appropriate. 

i i 

i i 

Expression for Generalized Transmission Error in Terms of Bearing Offset 
and Flexibility Matrices 

The expression given by equation (2.12), 

describes the generalized transmission error ~(x) of a meshing pair of spiral bevel 

gears in terms of the generalized displacement vectors q(l)(x) and q(2)(x) of the 

shaft centerline positions of gears (1) and (2) ,  respectively, measured from the 
positions of their rigid perfect involute counterparts. The generalized transmission 

error is defined by equation (2.10) and Fig. 5; the matrix T(*), ( 0 )  = (1) or (2 ) ,  is 

defined by equation (2.13) and Table 1; and, the vectors q'.), ( 0 )  = (1) or (2) ,  are 

defined by equation (2).  

Geometric compatibility requires that the shaft centerline positions of gears 

(1) and (2 )  coincide with their respective bearing centerline positions. 
centerline positions also are described using the generalized displacement vectors 

q(l)(x> and q(2)(x) that characterize the deviations of the actual centerline 
positions from the positions of the rigid perfect involute counterparts to the gears 

under consideration. These deviations have three vector contributions. The first of 

The bearing 
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( 0 )  these contributions is the generalized displacement vector q8 

that describes the deviation of the bearing centerline position when the gears are 

transmitting negligible load. This bearing "offset" from the position occupied by 

the shaft centerline of the rigid perfect involute counterpart may be intentional or 

unintentional. The second contribution describes the component attributable to 
the bearing and bearing support elastic deformations caused by the generalized force 

W transmitted by the gear mesh. or %(*I,  
by definition, includes a nonzero component q, 

displacement vector q ( O )  that describes the pure rotational deviation of the shaft of 

gear ( 0 )  about its axis from the position of its rigid perfect involute counter- 

part. The vector describing this third contribution is 1 6  p ( * ) }  where fji3 is "*' of each vector 3 Kronecker's delta (ref. 2 4 ) .  Hence, the third component p 

, ( 0 )  = (1) or (21 ,  

( 0  1 Neither of the vector contributions s, 
= P 3  ( *  of the generalized ( *  

and q is, by definition, zero. The deviation vector for gear ( 0 )  

' l o -  W 
( * )  that describes the sum of these three contributions is 

Let A,,(*) denote the 6 x 6 element bearing/bearing support flexibility matrix 
[ Ai ( *  '1 , where each flexibility inf hence coefficient A 

' * I  from a unit torque or contribution to the generalized displacement component q 

( ' I  of the generalized force vector described by equations ( 3 )  and force component Q 
( * I -  ( 4 ) .  Since the component q 

term {813P3 (*I} in equation (71 ,  the third row in the flexibility matrix +(*) is, by 

definition, filled with zeros; i.e., 

( *  represents the i' 

i 

j 
( * I  of q(*)  is being handled separately by the 

3 - p 3  

A ( * )  A = 0 , j = 1 , 2  ,..., 6 
3 j  

Furthermore, it will be assumed that the reaction of the shaft of gear ( 0 )  to the 
= T3 ( * I  is not coupled to the bearing supports, which pure torque component Q 

imp 1 i e s that 

( * >  
3 

( 0 )  A 
1 3  

A = 0, i = 1 , 2  ,..., 6 ( 4 . 9 )  

( 0 )  since A33 

bility matrix [A':)] is symmetric (ref. 2 3 ,  pp. 4 , 5 ) .  The subscript @ on % 
= 0 by virtue of equation ( 8 ) .  Thus, the bearing/bearing support flexi- 

( 0 )  

iJ 
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Ls used as a reminder of the requirements ( 8 )  and (9). From the definitions of 
pv'* and A,, (* 1 , there follows 

(4.10a) 

= (4.10b) 

where Q'') is defined by equation (3), and equation (4) has been used in going from 

equation (loa) to equation (lob). 

the deviation of the bearing centerline position attributable to the generalized mesh 

= ', ( * )  of torque about the axis of 

Equation (lob) gives the vector contribution of 

force vector Y. From equations (9), (loa), and (3) it follows that qw (* 1 
(*  1 contains no contribution from the component Q, 

gear ( 0  ), which may be determined from equations (41, ( 5 ) ,  and (1) to be 

T3 O t  b 
( 0  1 

= ( ~ + r  w )siny . ( 0  1 

For ( 0 )  = (1) or (2), let us define the matrix 

and the matrix 

Using equation (lob), we have 

(4.11) 

(4.12) 

(4.13) 

= - o w ,  

where the definitions (11) and (12) have been used. Combining equations ( 6 ) ,  ( 7 ) ,  

and (13) gives 

(4.14) 

where dependence on the rotational positions of the gears is denoted by the variable 

X. Equation (14) expresses the generalized transmission error s;(x) defined by 
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(1) (2) equation (2.10) in terms of the bearing centerline offset vectors % 
the generalized mesh force vector W(x), and the gear shaft rotations p (l)(x) and 

and qo , 

3 
(2)(x) about their axes illustrated in Figs. 12 or 13, as appropriate. p3 

The matrix + in equation (14) characterizes the composite bearing/bearing 
support flexibility of gears (1) and (2). 

+(2) that contributes to 0 in equation (12) is the negative of the bearing/bearing 
support flexibility matrix that yields the contribution to the generalized 

transmission error vector 
caused by the generalized mesh force vector U. 

of +(') that each of these matrices is symmetric; i.e., 

Each of the two matrices +(l)  and 

from the bearing/bearing support elastic displacements 
It follows by forming the transpose 

(4.15) 

hence, it follows from the symmetry of %(.) and the definitions (11) and (12) that 
+(*) and + are symmetric. 
three columns. 

Each of the matrices + (l)  , and 0 has three rows and 

Equations for Generalized Mesh Force Corponeats 

Consider the last two terms in the right-hand side of equation (14). Utilizing 

equation (2.13) to evaluate these two terms, we have 

(4.16a) 

(4.16b) 
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where, in going from equation (16b) to equation (16c), we have defined 

(4.16~) 

(4.17) 

Figure 14 shows the torque component T + r W at the base cone apex of gear o t  
(*I and (T + r W )cosyb ( 0  ( 0  ) resolved into components (‘I + roWt)sinyb 

the x3 
effects, it follows that the torque applied to gear ( 0 )  by its shaft, which coincides 
with the x3 ( 0  1 axis, must have a magnitude of (T + roWt)sinyb (*I positive in the 

direction of -p3( ’ ) .  Examination of Figs. 12 and 13 shows this conclusion to be 
valid for all gear configurations listed in Table 1. 

of this torque applied to the shaft of gear ( 0 ) ;  i.e., 

parallel to o t  
axes, respectively. In the absence of gear rotational inertial ( 0 )  and -x2 ( 0  ) 

Let us denote by M(*) the value 

which we may regard as being known. Then, from equation (181, we have 

(4.18) 

(4.19) 

from which it follows that the generalized mesh force vector, equation (11, can be 
expressed as 

(4.20) 

where the dependence of W(x), Wt(x), and Wr(x) on the rotational positions of the 
gears has been explicitly denoted by their dependence on X. 

Equation 14 expresses the generalized transmission error ~ ( x )  in terms of bear- 
ing offsets, bearing/bearing support flexibilities, and shaft rotational displace- 

ments. In contrast, equation (3.401, 
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-3 

BASE CONE 

F I G .  14. GENERALIZED MESH FORCE COMPONENTS W t ,  W r ,  AND T SHOWN I N  F I G .  4 EXERTED ON 

GEAR ( * )  BY I T S  MATING GEAR. GEAR ( * )  I S  GEAR ( 1 )  I N  F I G .  3. RIGHT-HAND 

RULE APPLIES TO VECTOR REPRESENTATION OF MOMENTS. MOMENT OF 6 ABOUT ZONE 

OF CONTACT CENTER o IS T. MOMENT OF 6 ABOUT BASE CONE APEX IS  T + r w 
o t  - 

WHICH HAS COMPONENTS (T + roWt)siny b (*I AND ('c + roWt)cosyb (*I I N  THE 

AND -x2 ( DIRECTIONS, RESPECTIVELY. 
( -  1 

3 X 
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is an equation for the generalized transmission error in terms of the stiffness 

weighted geometric deviations iK(x) of the tooth surfaces from perfect spherical 

involute surfaces defined by equation ( 3 . 4 2 1 ,  and the tooth pair/gear body stiffness 
matrix K(x) defined by the coefficients of the left-hand sides of equations ( 3 . 3 7 )  

through ( 3 . 3 9 ) .  

obtain a matrix algebraic equation for the generalized mesh force vector U(x). 

By combining equations ( 1 4 )  and ( 2 1 )  to eliminate ~(x), we can 

Substituting equation (16c) into equation ( 1 4 )  and the resulting expression into 

equation ( 2 1 1 ,  we obtain 

( 4 . 2 2 )  

or, by rearranging terms and introducing the identity matrix I, 

Introducing equation ( 2 0 )  into equation ( 2 3 )  and again rearranging terms, we have 
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Equation (24) is the desired matrix equation for the components Wt(x) and Wr(x) of 

the generalized mesh force vector W(x) defined by equation ( I ) .  

are obtained, the component ~(x) of W(x) may be determined from equation (19) using 
the shaft input torque M"),  which is assumed known. 

Once Wt(x) and Wr(x) 

The matrix equation (24) represents three simultaneous linear algebraic equa- 

tions for the three unknowns Wt(x), Wr(x>, and p3b(X)' 
placement vector component p (x) defined by equation (17) is the total contribution 

from both meshing gears to the rotational vector component normal to the base plane 
of (plane of contact) arising from the angular deviation components p 3  

the shafts of gears ( 1 )  and (21, respectively, from the positions of their rigid 

perfect involute counterparts. The value of p (x) is of interest in the present 
investigation only in the supplementary role it plays in equation (24) as a 

contribution to our ability to compute Wt(x) and Wr(x). 
by equation (2.5) and the neighboring text. 

The (small) angular dis- 

3b 

(2) 
and P 3  

( 1 )  

3b 

The parameter ro is defined 

The matrix K(x) is the composite tooth pair/gear body stiffness matrix of the 

two meshing gears defined by the coefficients of the left-hand sides of the set of 

simultaneous equations (3.37) through (3.39), as one may see by comparing this set of 

equations with equation (3.40). 

defined by equations ( 1 1 )  and (12) occurs in equation (24) only as the second term in 
the matrix product K(x)@ which collectively characterizes the elastic properties of 
the meshing gears (including the teeth) and the bearings and bearing supports. The 
matrix K(x), the matrix product K(x)+, and the identity matrix I all are of dimension 
3 x 3. 

The bearing/bearing support flexibility matrix 

The right-hand side of the matrix equation (24) contains contributions from 
( 1 )  three sources: 

qo(2)(x) from gears ( 1 )  and (2), respectively, (b) the vector %(x) defined by 
equation (3.42) which characterizes the stiffness weighted geometric deviations of 

the tooth running surfaces from their perfect spherical involute counterparts, and 

(*I, where M ( * )  may be taken as the driving torque of either (c) the torque M ( *  'cscy 

gear ( 0 )  of the meshing pair when the rotational inertial effects of gear ( 0 )  are 

negligible, and yb (*I is the angle associated with the same gear ( 0  ) illustrated in 
either Fig. 12 or Fig. 13, as appropriate. (x) and 

The matrix T(*) is defined by 

(a) the bearing offset generalized displacement vectors qa (x) and 

b 

(1) The bearing offset vectors qo 
(XI are represented in the generalized displacement coordinates defined by (2) 

QO 
equation (2) and Fig. 12 or Fig. 13, as appropriate. 
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equat,ion (2.13) and Table 1. 
equation ( 5 ) .  

It is the transpose of the matrix %(*I defined by 

Equation (24) readily can be solved using Cramer's rule (ref. 24). 

-+ 
The location of the force vector W representing the resultant total force 

transmitted by the mesh is illustrated in Fig. 4. 
measures the distance between the nominal zone of contact center - 0 located by ro in 
Figs. 12 or 13 and the path of f. 

Dimension d shown in the figure 

The value of d is readily computed from the three 
components T, Wt, and Wr of the 
Since T = (Wld, it follows with 

- - T 

d=l?[Wy2+U2] r 112 

generalized mesh force U described by equation (1). 
the aid of equation (19) that 

(4.25) 

where Wt(x) and Wr(x) are solutions to equation (24). 
functions of the rotational positions of the gears, as indicated by their dependence 

on x, it follows that the distance d also is a function of the rotational positions 
of the gears. 

Since these solutions are 

Case of Nornegligible Gear Body Inertias. In deriving equation (241, the 

inertial forces arising from transverse and axial vibrations of the gear bodies were 
assumed to be negligible. This assumption was employed when the forces applied to 

the bearings by the gear bodies (or shafts) were set equal to the appropriate mesh 
forces; that is, when the generalized force vector Q(* 

to the bearings by the gear bodies (or shafts) was set equal t o  the right-hand side 
of equation (4). 
(lob). 

shaft input torque Pi(*), equation (18 ) ,  was assumed to be known and independent of 

the rotational positions of the gears and of time as in equation (20). 
characterizing the relationship between the generalized force vector Q(* 

the bearings and the generalized bearing displacement vector g(*) by the bearing/ 
bearing support flexibility matrix (= 1 = [Aij ( * ) I ,  as in equation (loa), ignores 

the inertia of the bearings and their supporting structure. When inertial effects 

are not negligible, a further complication arises from the fact that the mesh force 

components T, Wt, and Wr will be functions not only of the rotational positions of 
the gears characterized by the variable x, but also of time and the rotational speed 

describing the forces applied 

That step occurred in passing from equation (loa) to equation 

An assumption of negligible gear train inertia also was employed when the 

In addition, 

applied to 

59 



of the gear train which controls the temporal behavior of the gear train vibratory 
excitation. 

Equation ( 2 4 )  remains valid if the input torque M(*) defined by equation (18) is 
allowed to vary with time. 

component of the mesh torque coinciding with the axis of gear ( 0 ) .  

variations of M(*) can be determined by solving the torsional equations of motion of 
the gear system. 

manner, are used in equation ( 2 4 ) ,  the time dependent values of Wt and Wr obtained 
therefrom, and the values of T obtained from M(*) and Wt using equation (19), will 
include the inertial effects associated with torsional vibratory motions of the gear 

system. It is likely that these inertial effects are more important than those 

arising from transverse and axial vibrations of the gear bodies, or from bearing/ 
bearing support motions. 

In such applications, M(*) is to be interpreted as the 
The temporal 

If the temporal variations of M(*),correctly determined in this 

6 0  

~ . 

A general methodology for computing the components of the mesh force vector W in 
cases where inertial effects are not negligible is outlined in the text following 

equation (3 .45b) .  Equations ( 4 )  and (5), which describe the components, equation 

( 3 ) ,  of the generalized force vector Q(*) in terms of the mesh force vector U, are 
useful for describing the mesh excitation torques and forces on the gear bodies in 

these cases. 
support elastic deformations 4y(*) by 

Furthermore, in these cases one would describe the bearing/bearing 

( 4 . 2 6 )  

( * )  are the same as those in equation (7). ( 0 )  ('1 
where the meanings of q 9 qo 9 and Qw 



AN EXTREMM PRINCIPLE FOR COwIlTATION OF THE ZONE OF 'I" CONTACT 
LIND GENERALIZED TRANSWISSION ERROR 

A set of linear algebraic equations, equations ( 4 . 2 4 )  and ( 4 . 1 9 ) ,  has been 

derived for computing the three mesh force components under "static" loading 
conditions where inertial effects are negligible. 

components are dependent on the bearing/bearing support flexibilities, tooth/gear 
body stiffnesses, and other factors. When these mesh force components are used to 
evaluate the three transmission error components, they yield the generalized static 

transmission error components. 

The resulting mesh force 

To carry out the above-described computations, the positions of the endpoints of 

the lines of tooth contact must be known for all rotational positions of the gears. 
However, for tooth running surfaces that have been substantially modified from the 

"ideal" spherical involute toothform (ref. 1 3 ) ,  these endpoint positions generally 

will have to be computed. 

In the present section, a method is developed for computing the positions of the 
endpoints of the lines of tooth contact and the three components of the generalized 

transmission error. For a given set of forces transmitted by the mesh, it is shown 

first that each of the three components of the generalized transmission error is 

stationary (ref. 2 2 )  with respect to small independent variations in the endpoint 

positions of all lines of tooth contact about their true values. For given forces 
transmitted by the mesh, this property implies that the value of each of the 

generalized transmission error components is insensitive to small errors in the 

endpoint positions of the lines of tooth contact. 

It then is shown that the tangential component of the generalized transmission 
error takes on a minimum value when the endpoint positions are given their true 
values. This property is the basis of a computational procedure utilizing the method 
of steepest descent (ref. 2 5 )  that is described for computing the true values of the 

endpoint positions and the generalized transmission error components. Alternative 

methods for computing the contact regions of the teeth of parallel-axis gears have 

been developed by Seager (ref. 2 6 )  and Conry and Seireg (refs. 2 7 ,  2 8 ) .  

The computational procedure described herein is based on the assumption that 

along every path of tooth contact on a tooth running surface, the tooth surface 
modification from a perfect spherical involute surface is a monotonic strictly , 
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increasing function (ref. 29) in both directions along this path away from some 
interior unmodified region which may be of negligible size. 

considered positive when it is equivalent to removal of material from a perfect 
spherical involute surface. However, one tooth of a meshing pair of teeth is 

permitted to be completely unmodified. If both teeth are unmodified, the zone of 

contact is the ideal geometric zone of tooth contact shown in Fig. 3. It will be 
assumed that the tooth running surface modifications from equispaced perfect spheri- 

cal involute surfaces are sufficiently small so that the true surface of tooth 
contact is well approximated by a plane surface passing through the common location 

of the apexes of the pitch cones of the two meshing gears as illustrated in Fig. 3. 

The modification is 

Stationary Property of Generalized Transmission Error 

As the gears in a meshing spiral bevel pair rotate, the lines of contact of 
meshing pairs of teeth pass through the nominal zone of contact, as one can see from 

Fig. 3. The variable x, defined by equation ( 2 . 6 )  and Fig. 3 ,  describes the 
rotational positions of the gears and the locations of the lines of tooth contact in 

the plane of contact. Our aim is to determine the true locations of the endpoints of 

these lines of contact for a generic fixed value of X. When these endpoint locations 

are determined for all tooth pairs j in contact fop all values of x within the range 
-(A/2) < x < (A/2) where A is the tooth spacing interval in the variable x, the locus 

of points traced out by the endpoints of the lines of contact of all tooth pairs j as 

x is varied determines the zone of tooth contact in the plane of contact. This zone 

of contact is illustrated in Fig. 15. For a fixed value of x, the positions of the 

endpoints for tooth pair j are described by the values yAj and YBj where y is the 
radial coordinate 

A y - r  - r  
0 

illustrated in Fig. 3. 

For a given generic value of x, it is shown below that each of the components 
ct(x), ~(x), and 5 (x) of the generalized transmission error is stationary with 

respect to small independent variations in the values of the endpoints yAj and yBj of 
all lines j of tooth contact of all pairs of teeth in contact, where these variations 

are taken about the true values of yAj or yBj. 

r 

In carrying out these variations in 
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BOUNDARY OF ZONE 
OF TOOTH CONTACT 

LLINE OF CONTACT 
OF TOOTH PAIR j 

FIG. 15. ZONE OF TOOTH CONTACT IN PLANE OF CONTACT TRACED OUT BY ENDPOINT POSITIONS 
YAj AND yBj OF LINES OF TOOTH CONTACT. 

63 



the endpoint positions YAj or YBj, all other parameters and variables, including the 
generalized force components Wt, T, and W, transmitted by the mesh, are held fixed. 

Furthermore, in carrying out these variations, negative values of the elastic 

deformations s.(x,y) normal to the tooth surfaces are permitted, where a positive 
value of u 

mathematical artifact of allowing negative values of sj(x,y) to occur along the 
lines of contact outside the actual contact range determined by the true endpoint 

values of y 
transmission error component 5 (x) takes on a strong local minimum (ref. 30) with 

respect to both positive and negative variations in the endpoint positions about 

their true values. 

endpoint positions and the transmission error component 5 (x) also allows negative t 
values of %.(x,y) beyond the true range of tooth contact. 

J 
(x,y) is associated with compressive forces between the teeth. The nj 

and yBj will be seen later in this section to guarantee that the 
Aj 

t 

The procedure developed to compute the true values of the 

J 

Stationary Property of 5 (x). Equations (3.37) and (3.38) are a pair of t 
simultaneous algebraic equations for the generalized transmission error components 

~ ( x )  and ct(x). These equations are of the form 

where the right-hand sides are of the form 

r “ c + q  a a (5.4) 

where all quantities in equations (2) through (5) are functions of the variable x 

which describes the rotational position of the gears. 
equations (4) and (51, respectively, are two of the components of the generalized 
force transmitted by the mesh. Expressions for the terms a a , rl ; and bl, b2, 
and rl are readily obtained by comparing equations (2) through (5) with equations 

(3.37) and (3.38). Each of these latter six terms is an explicit function of the 

endpoint positions YAj and YBj of all of the tooth pairs j in contact at the 
rotational position of the gears designated by the value of x, as one can see from 

The terms T and Wt in 

1’ 2 a 
b 
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, 

equations (3.37) and (3.38), (3.36a) through (3.3601, and (3.32a) through (3.320)~ 

where dependence of the endpoint positions y ~ j  and YBj on tooth pair index j has been 
suppressed. Thus, the generalized transmission error components l~ and 

determined by the solution of equations (2) and (3), also must be regarded as 5t7 
functions of the endpoint positions of all tooth pairs in contact. 

mesh force components T and Wt are considered here to be known and fixed. 

The generalized 

Equations (2) and (3) are readily solved for the tangential generalized trans- 

mission error component 5,: 

r l  a r  - b r  l b  l a  = b 

Let y 
contact. 

variations in the endpoint positions y ) = 

0 at the true values of the endpoint positions for all such endpoint positions yej- 
The generalized mesh force components T and Wt are to be held fixed while carrying 

out these partial derivatives. 

denote either endpoint position YAj or YBj of a generic tooth pair j in ej 
In order to show that 5 is stationary with respect to small independent 

t 
it is necessary to show that (actlay 

ej ej 

We shall let primes denote partial derivatives with respect to a single generic 
Forming the partial derivative of equation (6) with respect 

ej. endpoint position y 

to Yej gives 
- 

a b -b a )(a r'+a'r - b r'-b'r F 1 2  1 2  l b  l b  l a  l a 1  

I l-(a r -b r )(a b'+a'b -b a'-b'a ) 
l b  l a  1 2  1 2  1 2  1 2  

2 
(a b -b a ) 
1 2  1 2  

(a r'+a'r -b r'-b'r ) - ct(a b'+a'b -b a'-b'a ) l b  l b  l a  l a  1 2  1 2  1 2  1 2  
a b  - b a  

= 

1 2  1 2  

a (r'-b'C ) - b'(r -a 5 ) - b (r'-a'< ) + a'(r -b 5 ) 
1 b 2 t  1 a 2 t  1 a 2 t  1 b 2 t  - - 

a b  - b a  
9 

1 2  1 2  

(5.7a) 

(5.7b) 

(5.7c) 
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where equation ( 6 )  was used in going from equation (7a) to equation (7b). 

from equations (2) and (3) we have r - - b2Gt = blp, 
respectively, which when combined with equation (7c) gives 

However, 

= a FI and r 
a a2ct 1 b 

a (r'-b'c - b;p) - b (r'-a'c -alp) 1 b 2 t  1 a 2 t  1 
a b - b a  

ej 1 2  1 2  aY 

From equations (3.37), (3.38), (3.36a) through (3.360), and (3.32a) through 
(3.320), it follows that the coefficients and right-hand sides of equations (2) and 
(3) can be expressed as 

(5.9a,b,c) 

and 

b = !  blj, b = 
1 2 

J 
(5. loa, b , c) 

where equations (4) and (5) have been used in equations (9c) and (1Oc). Each term 

and in equations (9a,b,c) and (lOa,b,c) is dependent on 
bj q j ,  a2j' TIaj, blj 9 b2j' 

only the endjoints YAj and yBj of the single mating tooth pair j .  

six terms are independent of T and Wto Hence, continuing to denote partial 
derivatives with respect to y by primes, we have by differentiating equations 

(9a,b,c) and (10a,b,c) with respect to yej while holding T and Wt fixed, 

Moreover, these 

e j 

( 5.1 la, b,c) 

and 

b' = b' b' = b' (arblay ) =TI' (5.12a, b , c) 
bj ' 1 lj' 2 2j ' ej Wt 

where the subscripts T and Wt denote that these quantities have been held constant 
while evaluating the derivatives. 
equation (8) gives 

Combining equations (lla,b,c) and (12a,b,c) with 

al(TIij-bijCt-biju) - b 1 (TI' aj -a' 2j 5 t -aijp) 

a b - b a  9 G$!!," t = 1 2  1 2  
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where the subscript T,W t 
constant while evaluating the partial derivative 

on the left-hand side denotes that T and Wt have been held 

/ay t ej. 

From equations (3.12) and (3.10), we see that the generalized mesh force 

components T and Wt can be expressed as 

where T and W 
pair j. It follows from the discussion between equations (3.33) and (3.37) and 

equations (2), (3), (9a,b,c), (lOa,b,c), and (14a,b) above that T and 

Wtj can be expressed as 

are the components of T and Wt, respectively, transmitted by tooth 
j tj 

j 

T = a  p + a . c  - T I  , 
j U 23 t aj 

and 

(5.15) 

(5.16) 

which are abbreviated forms of equations (3.33) and (3.34), respectively. Forming 

the partial derivatives of equations (15)  and (16) with respect ot yej while holding 
the generalized transmission error components p and 5, constant gives 

and 

(5.17) 

(5.18) 

where primes denote partial derivatives with respect to yej, as before. 
equations (17) and (18) into equation (13), we have 

Substituting 

(5.19) 
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From equations (3.13) and (3.161, respectively, it follows that Wtj and T can 
j 

be expressed as 

’Bj 

and 

where 

and 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

where r and 

angles rlb(y) 
0 

stiffnesses 

. y are defined in Fig. 3, x is defined by equation (2.6) and Fig. 3 ,  

and X.(x,y) are defined in Fig. 9 ,  K(t)(x,y) and K(’)(x,y) are local 
J nj nj 

of tooth pair j per unit length of line of contact defined in Appendix B, 

and u 
both teeth of tooth pair j evaluated at location y along the line of contact, as 

described by equation (3.1) and the accompanying text. 

(x,y) is the local combined elastic deformation of the running surfaces of 
nj 

According to equation (19), p and 5 must be held constant when evaluating the 

partial derivatives of the right-hand sides of equations (20) and (21). From equa- 

tion (3.281, it follows that the elastic deformation 
constant when p and 5 are held fixed. Furthermore, in the steepest descent 
procedure used to compute the endpoint positions YAj and yBj and the generalized 

transmission error components p ,  ct, and 5 

K(t)(x,y) and K(lf)(x,y) will be assumed to be independent of yAj and YBj during any 

descent. 

the general endpoint variable y 

t 

(X,Y) must be treated as a 
j 

t 

the local tooth pair stiffnesses 
r’ 

4 nJ 
Forming the partial derivatives of equations (20) and (2.1) with respect to 

and treating K(t)(x,y) and K(Y)(x,y) as independent 
ej nj nJ 

Of YAj and YBj 9 we thus find 
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(5.24) 

-r b (g -g 

a b - b a  
1 2  1 2  

al g1j 0 1 2j lj 

and 

u (X,Y 1 9 

nj ej 

where the upper (plus) signs apply 

apply to the case yej = YAj' 

(5.25) 

to the case yej = YBj and the lower (minus) signs 

Finally, substituting equations (24) and (25) into equation (191, we obtain 

(5.26) 

where the upper (minus) sign applies to the case yej = YBj and the lower (plus) sign 

applies to the case yej = YAj. The quantities a 1' a2, bl' and b, are the co- 
efficients in equations (2) and ( 3 )  which are readily determined by comparing these 

two equations with equations (3 .37 )  and ( 3 . 3 8 ) ,  respectively. 

are defined by equations (22) and (23). 

The quantities glj and 

Each of these six quantities is 
g2j 
dependent on the endpoint value y 
that value in equation (26) as is indicated. 

under consideration and is to be evaluated at ej 

For a fixed rotational position of the meshing bevel gear pair designated by the 
variable x, as we proceed along a generic line of tooth contact j from the interior 
of the contact region outward in either possible direction, the composite local 

elastic deformation unj(x,y) of the tooth pair diminishes from a positive value in 
the interior of the contact region to a value of zero at the boundary y = yej of that 

region. 
considered to be independent of the endpoint positions y = YAj and y = yBj of the 

line of contact of tooth pair j, equation (26) shows that the tangential component 5 

of the generalized transmission error is stationary with respect to small variations 

in the endpoint positions of the line of contact of tooth pair j about their true 

values when the components f and Wt of the generalized force transmitted by the mesh 
are held constant while the endpoint positions are varied. 

Thus, when the local tooth pair stiffnesses K(t)(x,y) and K(lJ)(x,y) are nj nj 

t 

Furthermore, since 
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equation (26) applies to any tooth pair j in contact, we have shown that 5 

stationary (ref. 22) with respect to small independent variations in the line of 

contact endpoint positions of all tooth pairs in contact. 

is t 

Stationary Property of ~ ( x ) .  The symmetry in the relationships leading to 
equation (26) enables us to write an expression for (ap/ay 

result (26). 
based entirely on the relationships described by equations (2) through (5), 

(10a,b,c), (14a,b), (151, and (16). 

) directly from the 
ej T,Wt 

To see this, we note first that the derivation of equation (19) is 
(9a,b,c), 

If the members in each of the five pairs of 
quantities (11 ), 

another, the above 

equation numbers. 

,<t ), and (blj, b ) are exchanged with one 
2j 

(a19 a 2 ), (bl,b2L (alj’a2j 
set of relationships remains unchanged except for some of the 
Making these same exchanges in equation (19) yields 

-b a )-l [a(%)5t,p - b 2 (5) aYej C t d  ] , (5.27) 
(a2bl 2 1 aYej 

= -  

t ‘c ,w 

where the order of the quantities 5, and p in the subscript 5 is of no conse- t’U 
quence. 

in each of the above-mentioned five pairs of quantities are exchanged with one 

another. 

the above five pairs of quantities in equation (261, which yields 

Furthermore, equations (20) through (25) remain unchanged when the members 

Hence, we obtain a valid relationship by exchanging the members in each of 

(5.28) 

where the upper (minus) sign applies to the case yej = YBj and the lower (plus) sign 
applies to the case Yej = YA~. 
component p of the generalized transmission error is stationary with respect to small 
independent variations in the endpoint positions of the lines of contact of all tooth 

pairs in contact about their true values for the same reason given in the discussion 
of equation (26). 

It follows from equation (28) that the rotational 

Stationary Property of 5 (x). Equation (3.39) is of the form r 

cllJ + C3Cr = wr + rl , 
C 

(5.29) 
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where 5, is the third component of the generalized transmission error and Wr is the 

third component of the generalized force transmitted by the mesh. Expressions for 
c c and 11 are obtained by comparing equation (29) with equation (3.39). Each of 
these three terms is an explicit function of the endpoint positions yAj and yBj of 

all of the tooth pairs j in contact, as one can see from equations (3.39), (3.36a) 

through (3.360), and (3.32a) through (3.320). Thus, p and 5 are functions of these 

endpoint positions. Furthermore, from equations (2) through (5) we have seen that p 

must be regarded as an implicit function of the generalized mesh force components 
T and Wt. 

of all three mesh force components T, Wt, and W . 

1’ 3’ C 

r 

It follows then from equation (29) that 5, must be regarded as a function 

r 

Forming the partial derivative of equation (29) with respect to a single generic 

endpoint position yej while holding all three mesh force components T, Wt, and Wr 
constant, we have 

c (”) aYej .r,w t t r  
(5.30) 

where primes denote partial derivatives with respect to y 
the terms in equation (30), we have 

as before. Rearranging ej ’ 

- (c)J + c‘5 I l l )  3 r  c 
c (L) 

T,w ,W 
t r  

(5.31a) 

(5.31b) 

where equation (29) was used in going to the second line and subscripts following 

parentheses in equations (30) and (31a,b) denote quantities to be treated as 

constants in evaluating the partial derivatives. 

From equation (3.11), we see that the component Wr of the generalized mesh force 
can be expressed as 

Furthermore, from equation (3.35) it follows that Wrj can be expressed as 

(5.32) 

(5.33) 
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where by comparing equations (3.351, (3.36a) through (3.360), and (3.39) with 

equations (33), (32), and (29) above, we see that 

(5.34a,b,c) 

l j ,  c3j, and where each term c 

YBj of the single tooth pair j. 
follows that 

is dependent on only the endpoint positions YAj and 

Hence, from equations (29) and (32) through (34~) it 
cj 

From equation (3.141, it follows that W can be expressed as rj 

JAj 
where 

(5.35) 

(5.36) 

(5.37) 

where the local tooth pair stiffness K(r)(x,y) is defined in Appendix B. 
Furthermore, it follows from equation (3.27) that u 

nj 
(x,y) is independent of YAj and 

when p and 5, are held constant. Hence, considering K(r)(x,y) to be independent 
nj 

YBj nj 
of YAj and yBj, it follows from equations (36) and (37) that 

(5.38) 

where the upper (plus) sign applies to the case y = YBj and the lower (minus) sign 
applies to the case yej = yAj. 

Finally, combining equations (31b), (28), (35), and (381, we have 

72 



where the upper (plus) sign applies to the case yej = YBj and the lower (minus) sign 

applies to the case yej = YAj' 
component 5 

small independent variations in the endpoint positions of the lines of tooth contact 

about their true values for the same reason given in the discussion of equation (26). 

It fol~ows from equation (39) that the radial 

of the generalized transmission error is stationary with respect to r 

Hnimm Property of Generalized Transmission Error Component 6, 

In order to show that the tangential component 5 of the generalized t 
transmission error takes on a minimum value when the endpoint positions YAj and yBj 
of the lines of contact of all tooth pairs j in contact take on their true values, 

it is necessary to consider the second variation (ref. 22) in 5, at the true values 
of the endpoint positions. 

the second variation be positive, which requires (ref. 22) in our case that 

For 5 to take on such a minimum it is necessary that t 

(5.40) 

for all real numbers a 

that E a 2 = 1. 
same 400th pair are treated as y 
count endpoints here, two per tooth pair, not tooth pairs. The condition (40) 
clearly is satisfied if 

and ak subject to the condition for all j that la 

In interpreting yej (or yek) here, endpoints YAj and YBj on the 

< 1 and 
j A 

3 
for two different values of j; i.e., j and k ej 

( a25t ) '0, k # j  
ayejayek T ,Wt 

and 

> O  (-) 'c ,Wt 

(5.41) 

(5.42) 

for both endpoint values yej = YAj and yej = YBj of all tooth pairs j in contact. 

It is shown below that the condition (41) always is satisfied, and the condition 
(42) usually is satisfied and always can be satisfied by a readjustment of the 

parameter ro. 
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Hixed Partial Derivatives of 5,. Equation (13) is of the form 

Hence, 

a N  2D 

a ’ek a ’ek 
r1 - - ND-2 - 

t 

(5.43) 

(5.44a) 

(5.44b) 

where equation (43) was used in proceeding from equation (44a) to equation (44b), 
and T and Wt are to be treated as constants in evaluating the partial derivatives on 
the right-hand sides of these equations. Since from equation (26) it follows that 

= 0 at the true endpoint positions, it is necessary here to show only 
(act’aYej)T ,w A 
that (aN/ayekfT,wt = 0, provided that D = a b - b a f 0. 

1 2  1 2  

Continuing to leave off the explicit notation that T and Wt are to be held 
constant in forming derivatives, it follows by differentiating the numerator in the 

right-hand side of equation (13) with respect to yek that 

(5.45) 
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where we have recognized that the primes in equation (13) denote partial derivatives 

with respect to yeje 
endpoints implied by equations (26) and (28), respectively, applies to any endpoint, 

Since the vanishing of as t /ay ej and au/ayej at the true 

we have 

(5.46a ,b) 

at the true endpoints. 

endpoints it follows from equations (17) and (25), and (18) and (24) that at the 
true endpoints we have 

Furthermore, from the vanishing of u .(x,yej) at the true 
nJ 

n' - a' 5 - a' = 0 ,  0' - b ' ~  - b ' u = O .  
aj 2j t lj bj 2j t lj 

(5.47a,b) 

Thus, for aN/ayek to vanish for different endpoints yej and Yeks it further 1s 

required only that ( a2n bj /aYejaYek) , ( a2b2j/ayejayek), ( a2blj/aYejayek) , 
( a2naj/ayejaYek) , ( a2a2j/aYejayek), and ( a2alj/ayejayek) each vanish. Comparing 
equations (2), (3), (9a,b,c), and (10a,b,c) with equations (3.37), (3.381, (3.36a) 

through (3.3601, and (3.32a) through (3.320), we see that each term nbj, b2j, blj, 
a linear combination of integrals of the general form 

(5.48) 

where h(x,y) is independent of all endpoints YAj and YBj when K(')(x,y) nj and K$)(x,y) 

are regarded as independent of YAj and YBj. 
a2j, and alj also is of the form of equation (48). 
equation (48) with respect to either yej = yAj or yej = YBj, we obtain 

Hence, each term nbj, b2j, blj , naj , 
However, differentiating 

- -  aH - fh(x,yej) ; 
aYej 

hence, whenever yek # yej, it follows from equation (49) that 

'ek ' 'ej a2H = o ,  
a 'e j ayek 

(5.49) 

(5.50) 

Therefore, whenever yek # yej, we have shown that (aN/aYek) = 0 at the true 
endpoints, and from this result and the vanishing of ast/ay 

it follows from equation (44b) that 

at the true endpoints 
ej 
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# Y  ( aYejaYek a2et ) .r,w = 0 , 'ek ej 
(5.51) 

Equation (51) is valid at the true endpoints of the lines of contact, provided that 

D = alb2 - bla2 # 0. 

Unmixed Partial Berivattver o f  5,. If we set Yek = yej in equation (441, we 
can use that result to evaluate ( a 2 <  /ay 

endpoints, we proceed directly to the expression (45) with Yek = yej. 

utilizing equations (46a,b) with yek = yej and equations (47a,b), we find at the 
true endpoints that 

*)  . Since (act/ay .) = 0 at the true 
t ej T , W ~  eJ 

Again 

ayej 

where eqi 

(5.52a) 

(5.52b) 

ations (18) and (17) were used in proceeding to the second line. Th 

t' right-hand side of equation (52a) is an explicit function of neither 

Differentiating equations (24) and (25) with respect to yej and evaluating the 
resulting expressions at the true endpoints where u 

nor W 

= 0 ,  we obtain nj 

! 

( 5.53a, b) 

where the primes again denote differentiation with respect t o  yej* Let us define 

(5.54) 

Then, substituting equations (53a,b) into equation (52b) and the resulting exPres- 

sion into equation (44b), and recognizing that ( agt/ay .) = 0 at the true endpoints 
and that D = a b -b a 

A eJ 
we find using the definition (54) that 

1 2  12' 
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(5.55) 

and the lower (plus) sign applies ej = YBj where the upper (minus) sign applies to y 

to yej = YAj- Equation (55) 1s applicable only at the true endpoints Y A ~  &yBj 
where the elastic deformations unj(x,yej) vanish. 

(54) and (55) also can be obtained formally by differentiating equation (26) with 
respect to y 

The result given by equations 

and setting unj = 0 in the resulting expression. ej 

For 5, to take on a minimum value at the true endpoints yAj and yBj, equation 
(42) must be satisfied at each true endpoint position. This criterion is readily 

understood if we consider the Taylor's series representation of 5 as a function of 

endpoint position yej about the true endpoint position yo , while holding all other 
endpoint positions constant. 
this representation is 

t 

ej 
Retaining terms through the second degree in yej - y",, 

1 2 
I + -  5'' (Y -yo 1 , 'to 2 to ej ej 

( 5.56b 

where primes denote derivatives with respect to y 
and subscripts 0 denote that 5 and its derivatives are evaluated at the true t 

while holding 'c and Wt fixed, ej 

endpoint position yo . Since from equation (26) we have 5 '  = (aCt/aY ) 
ej t ej T,Wt 

= o  

at the true endpoints, the term proportional to s l o  is missing from equation (56b). 
For 5, to increase as yej is varied in either direction about its true value 
9 , it is clear from equation (56b) that s io  must be positive. 
condition (42) requires that the right-hand side of equation (55) be positive for 

every endpoint. 

Hence, the 
e j 

This requirement is readily understood with the aid of Fig. 16, which shows the 

behavior of the elastic deformation %j(x,Y) of tooth Pair j near the true endpoints 
YAj and YBj of the line of contact. 
solid lines. 

and K(r)(x,y) in equations (37), (23), and (37) are extrapolated beyond the true 

This elastic deformation is denoted by the 
Let us assume, now, that the local stiffnesses K(t)(x,y), K(')(x,y), 

nj nj 

contact nj region YAj < y < YBj using the stiffness values K (t) (x,Y~~), KnJ 
nj 
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and K(r)(x,Yej) at the endpoints, Yej - - yAj or yBj, as appropriate. Then, if the 
nj 

endpoints yAj or  yBj used in equations ( 3 . 3 7 )  through ( 3 . 3 9 )  are chosen outside the 

true contact region, the equations will predict the dashed behavior of sj(x,y) 
illustrated in Fig. 16, resulting in a prediction of tensile forces between the 

teeth outside the true contact region. This predicted fictitious behavior can be 
put to good use in determining the true endpoint positions. 

Let us now use this fictitious extrapolated behavior of y,.(x,y) in the 

neighborhoods of y = Y A ~  and y = yBj in our interpretation of equation ( 5 5 ) .  

Fig. 16 at y = yBj we have u' 
these signs of u' , it follows from the sign convention of equation ( 5 5 )  that 

J 
From 

< 0, whereas at y = yA we have u' > 0. Utilizing 
nj j nj 

ni 

( 5 . 5 7 )  

, 
I 

at all true endpoint positions yej = yAj and yej = yBj, where we recall that 
Aj(x,yej) is defined by equation ( 5 4 ) .  

The requirement ( 5 7 )  therefore replaces the requirement ( 4 2 )  for 5, to take on 

a minimum. 
satisfied, and that by appropriately adjusting the value of ro the requirement ( 5 7 )  

always can be satisfied. In the computational procedure described next, it is 

assumed that A.(x,yej) > 0 since this requirement always can be satisfied by an J 
adjustment in the value of ro. 

It is shown in Appendix F that the requirement ( 5 7 )  usually will be 



Y 

F I G .  16. PREDICTED ACTUAL ( S O L I D  LINES) AND F I C T I T I O U S  (DASHED L I N E S )  LOCAL ELASTIC 

DEFORMATION OF TOOTH P A I R  j NEAR ENDPOINTS YAj  AND yBj OF L I N E  CONTACT O F  

TOOTH P A I R  j .  
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COMPUTATIONAL PROCEDURES 

A method is outlined below for numerical computation of the endpoint locations 

YAj and YBj of the lines of tooth contact and the generalized static transmission 
error components 5 (x) and ~ ( x )  at a fixed rotational position of the gear pair 
described by X = xk. 

steepest descent (ref. 25) sometimes called the gradient method. 

t 
The method is based on the intuitively appealing method of 

Line of Contact Endpoints and Generalized Transmission Error 
Components for a Fixed Rotational Position of the Gear Pair 

The method is based on a very simple idea. For a given rotational position of 
the gear pair described by the value x = xk, the generalized transmission error 

component 5 ( 

{yAj(xk)} and {yBj(xk)}, where the number of elements j in each vector is the number 

m of tooth pairs j in contact. Thus, we can envision 5 (x ) to be displayed in a 

space of 2mtl dimensions as a function of the 2m variables yAj(xk), YBj(Xk), j = jl, 

is considered to be a function of the two endpoint vectors t X k  

t k  

j2,***,jm* 

Trial vectors {y (x,)} and {yBj(xk)} are chosen. A suitable choice for these 
Aj 

trial vectors is the endpoint values yAj(xk) and yBj(xk), j = j1,j2, ...,jm 
determined by the geometric zone of tooth contact illustrated in Figs. 3 or 7, as 
appropriate. 

components of {y ( 

of endpoint values is computed next, where the new set is obtained by proceeding in 
the direction in the 2m+l dimensional space that maximizes the rate of descent 

of 5 (x frornits initial trial position. This direction is the negative of the 
gradient of 5 ( ), 

Since it was shown above that ~~(5) takes on a minimum value when the 

I} and {y (x,)} are given their true values, a new trial set 
Aj "k B j 

t k  
t X k  

The components as t lay Aj and art/ayBj, j = jl, ...,j, are computed by equation (5.261, 
where u (x,y) is determined by equation (3.28) after employing equations (3.37) and 
(3.38) to compute 5 ( 1 and ~ ( 5 )  for use in equation (3.28). 

generalized mesh force components Wt(xk) and T(x ) is to be used in the determina- 
tion of ct(\> and ~ ( $ 1  by equations (3.37) and (3.38) for each new set of 
components a5 /ay 

nj 
A new pair of t X k  

k 

and act/aYBj, j = jl,...,jm as discussed in the next subsection. 
t Aj 

80 



A set of 2m increments for the m values of j is computed next, 

(6.2b) 

where for all values of j 

increments 6y and 6y small in comparison with the largest of the m values of 

(YBj-YAj), j = j l , .  . . , jm. 

jl, ...,jm, h is a constant chosen so as to keep 

Aj Bj 
New trial endpoint vectors are then determined by 

(6.3a) 

(6.3b) 

where i counts iterations. These values provide a new set of trial vectors 

(i+l)(xk) and p ’Aj (i+l)(%)} and {yiyl)(x)} from which new values 5 t 
are computed by equations ( 3 . 3 7 )  and (3.38) using the same generalized mesh force 

compnnents that were used in computing the derivatives act/ay 

equations (2a) and (2b), respectively. 
and ar;,/ayBj in Aj 

since (i) 
t The new value 5, (i+l)(%) should be smaller than its predecessor 5 

the negative of the gradient points downhill. 
procedure is repeated again with the same value of h, starting with recomputation of 

the gradient components as /ay 
generalized mesh force components, as described above. 

t 
same value of h is used to produce each new value of 5 t (i+a’(xk). However, at some 

(i+a)(x ) will be larger than the prior value t k iteration the newest value of 5 

Cii*-l)(xk). This will happen when the steps 6y 
by equations (2a) and (2b) overshoot the minimum value of ct(%) in our 2mtl 
dimensional space. 

If sii+’)(xk) < <ii)(xk), the above 

art/ayBj, j = jl, ...,jm using new values of the t Aj ’ 
This computation will result 

in a new value 5 (i+2)(xk), and so on. As long as 5, (i+a)(x ) < 5, ( i+a- l )  (xk) 9 the 

and 6yBj, j = jl, ... ,jm computed Aj 

When the new value of 5 ( i+a 1 (%) exceeds (xk), the value of h is 
t 

substantially reduced, and new values of 6 y  and 6YBj, j = jl,.-.,jrn are Aj 
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by equations (2a) and (2b) using the last set of already existing derivatives a <  /ay 
and ar;,/ay The iteration procedure then is continued as described 

(le)(\) again is obtained. At this 
t above until an increase in the value of 5 

juncture, the value of h again is substantially reduced. 

t Aj 
, j = jl, ...,jm. B j 

This procedure is continued until the absolute value of the largest of the set 

of 2m increments 6y Aj 
5 (x ) is negligible (by several orders of magnitude) in comparison with a typical 

value of (yBj - yAj). 
2m+l dimensional space effectively has been reached. 

and 6yBj, j - - j,, . . . , jm that produces an increase in 
t k  

When this event occurs, the minimum value of <t(xk) in our 

Since both ct(x) and ~(x) are required to compute u (x,y) using equation nj 
( 3 . 2 8 ) ,  both ct(xk) and p(xk) are available at the termination of the above 
procedure. 

{YBj(xk)} 9 j = jl,...,jm are to be stored. 
component 5 (x ) can be computed from the final endpoint values and u(xk) using r k  
equation ( 3 . 3 9 ) .  

The values < (x ), ~(x,), and the final endpoint vectors {y .(xk)} and 
t k  AJ 

The third generalized transmission error 

The resulting triad of transmission error components u(\), 
(x 1, and 5 (x ) is the generalized static transmission error evaluated at the t k  r k  

rotational position of the gear pair described by x = Xk. 

When the above procedure is started, care must be taken to insure that the s e t  

j 
however, there is no guarantee that the new set of endpoints computed by equations 

(3a) and (3b) will satisfy 

jl, ...,jm includes all tooth pairs in potential contact. At each iteration, 

j = jl, ...,j . m 

(f+l) = (i+l) in the 
Bj ’A j For each value of j - not satisfying equation ( 4 1 ,  one must set y 

remainder of that iteration, thereby eliminating those lines of tooth contact in the 

computation of 5 (i+l)(xk) t and p 

In related problems, we have found the above-described gradient descent to work 

very well. It requires a minimum computer programming effort. 

Generalized Mesh Force Components 

For the same rotational position of the gear pair described by x = xks the 

generalized mesh force components W (i) (5) and T(i)(\) are required for computation t 
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force component 

u(i)(%) by equations (3.37) and (3.38) using the endpoint vectors 

{ yii) (x,)} , j = j l , .  . . , jm as described above. These generalized 
s are to be computed using equations (4.24) and (4.19). However, the 

coefficient matrices K(x) and qK(x) in equation (4.24), which also appear in the 
matrix form (3.40) of equations (3.37) through (3.39), depend on the endpoint 

vectors { y(i)(x)} , {yi:)(x)}, j = j l,. . . , jm. Hence, generalized mesh force Aj 
(i) ($1 and .r(i)(%) computed using the endpoint vectors {y(i)(x,)} and components W 

{ yii)(xk)} should be employed in the above-described gradient descent procedure. 

t Aj 

The sequence of steps involved in the iterative portion of the procedure for 
computing the line of contact endpoints and generalized transmission error 
components for a given rotational position x = xk of the gear pair is listed below: 

A. Initial trial endpoint set {y‘i)}, { (i) } , j = j1,. ,jm Aj yBj 

B. Compute WLi) and T(i) with equations (4.24) and (4.19) using line of 

(i) contact endpoints { y(i)}, { . } . Aj yBJ 

C. Compute s(i), p(i), and u(i) at endpoints with equations (3.37), (3.38), 

and (3.28) using endpoints { yAj } , { 
t nj 

(1) (i) . } 0 yBJ 

D. Compute act/ayAj and ast/ayBj, j = j,, . . . , jm with equation (5 .26)  using 

(i+l)}, { (i+l)}, j = j, ,..., jm with Aj ’B j Compute new endpoint values { y 

equations (2a,b) and (3a,b) above. 

E. 

(i+l) = (i+l) (‘+I) (‘+I), j = j, ,..., j . If not, set y F. Test: Is yBj > yAj Bj ’Aj m 

(i+l> and p (i+l) with equations (3.37) and (3.38) using new t G .  Compute 5 

(i+l)}, {y:?’)}, j endpoint values {y 

W:i) and .r(i) computed in step B. 

jl ,..., jm and values of 
Aj 
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H. Test: Is 5, (i+l) < 5;'). If yes, delete 5, (i+l) , 1.1 (i+l); increase index i 

and test (i+l) (i+l) 
t , l J  by one and proceed to step B. If no, delete 5 

maximum increment magnitude 16y(i)l or (6yi;)l scanned over all j = 

j ,  ,..., jm, where 6y(i) and 6y(i), j = jl, ...,jm are those values used in 

step E. If maximum increment magnitude is negligible (several orders of 

(i+l) - '$+'I), effective 
Bj y4 magnitude) in comparison with typical interval (y 

minimum value of 5, 

magnitude is not negligible, substantially reduce h and proceed to step E. 

A j  

A j  Bj 

(i) has been achieved. If maximum increment 5, 

Comment: Notice that the comparison test "Is ct (i+l) < 
(i+l) and 5") having been computed using the same pair of generalized t t values of 5 

mesh force components W(i) and T(i) since minimum property of true value of 5 

proved under assumption of constant mesh force components Wt and T. 

always is made with 

was 
t t 

Generalized Transdssion Error Components and their Spectra 

The above procedure generates the generalized static transmission error 
components ~(x), ct(x), and cr(x) at a single rotational position of the gear pair 

described by x = xk. 

values of Xk, the generalized transmission error components (and lines of tooth 
contact endpoints) are determined as functions of the rotational position of the 

gears. 

By repeating this procedure at an equispaced sequence of 

If the elastic properties and running surface modifications from perfect 

equispaced spherical involute surfaces are the same for every tooth on each gear of 
the gear pair, then the generalized static transmission error components J.I(x), 

ct(x), and 5 (x) each is a periodic function of x with period A equal to the tooth 
spacing interval in x (Fig. 3 ) .  r 
as functions of x would require the above described procedure to be caried out at 
about 8 points with spacing in x of A/8. 
such equispaced transmission error component computations is described below. 

r 
Thus, minimum definitions of l~(x), ct(x), and 5 (x) 

An optimum method of interpolating between 

A representation of the transmission error in the frequency domain (refs. 7-9) 
Such a representation can be obtained from the trans- often is of primary interest. 

mission error computed at equispaced intervals using the method of trigonometric 
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interpolation (ref. 31) .  Let us denote a generic component u(x), gt(x), or cr(x) 

by g(x). 
that g(x) has been computed at 2n equispaced points Xk' where the spacing between 
adjacent points is 

Assume that g(x) is periodic with period A,  as noted above, and 

A x 'X z- 
k k-1 2n 

Let the 2n points Xk at which S(xk) has been computed be numbered k = -n, 
-( n-1)) ..., O,...,n-l. 
point k = n is provided by the point at k = -n; i.e., 

Since g(x) is periodic with period A, the value of a 2n+l st 

x = x  . n -n 

Let x' denote the independent variable in Lanczos' (ref. 31)  treatment of 

trigonometric interpolation. 
normalized to the interval [ -T ,T ] .  To change the interval [-IT,IT] to the period A 
in x of our independent variable, we require the transformation 

The period of the periodic function there has been 

Incorporating equation (7) into Lanczos' (ref. 31)  trigonometric interpolation 
formula (4-11.24) gives 

n 
g(x) = 1 ' a exp(iZrpx/A) , 

P p=-n 

where the expansion coefficients a are provided by Lanczos' formula (4-11.251, 
P 

where obvious changes in notation have been used. 

designates (ref. 31)  that the two limiting terms a-n and an are to be weighted by 
1/2 in the summation; similarly, the prime in equation (9) designates that 

g(x,) and s(xn) are to be weighted by 1/2 in that summation. 

The prime in equation (8) 

The prime in equation (8) is absent from the corresponding equation (4-11.24) 

in reference 31. However, the validity of the interpolation formula (8) readily can 
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be established by substituting equation (9) into equation (81, interchanging the 
order of summation, and then utilizing equation (4-11.17) of reference 31. 

Particular attention must be paid to the case where equation (8) is used at x = x-, 

or x = xn. 
only if ~ ( x  
with period A .  By substituting Lanczos' equation (4-11.20) into his equation (4- 

11.22), one can see that Lanczos' equation (4-11.22) is not valid for Ij-kl = 2n. 

This same conclusion can be reached by using L'Hopital's rule on the right-hand side 
of Lanczos' equation (4-11.17). 
shown that equation (8) is an exact interpolation formula when the a are computed 

by equation ( 9 ) ,  provided that ~ ( x - ~ )  = ~(x,), which is satisfied in our 

application. 

It follows that the interpolation formula is valid at these endpoints 
) = r,(xn), which is satisfied in our application since ~ ( x )  is periodic -n 

Nevertheless, with the prime included, we have 

P 

Equation (8) is identical to the complex Fourier series representation of the 
transmission error component ~(x) (ref. 7, equation (64)) except that (tooth 
meshing) harmonics p only through order n are included in the representation (8). 

Thus, from equation (81, we see that the coefficients a , IpI = O,l,...,n-1 

generated from computations of <(xk) at the 2n equispaced points xk9 k = -n,-(n- 
l),.. ., 0, ...,( n-1) can be directly interpreted as (approximations to) the complex 

Fourier series coefficients of the transmission error component <(XI. Because of 

the prime on equation (81, the coefficients a and a generated by equation (9) 
(p = *n) must be divided by 2 to be interpreted as Fourier series coefficients. 

P 

-n n 

The coefficients a generated by equation (9) can contain contributions from 
high-order harmonics IpV > n "impersonating" the lower-order harmonics IpI < n (ref. 
32, Fig. 8). Such aliasing contamination of the coefficients a can be minimized by 

choosing the number 2n of equispaced points at which ~ ( 5 )  is computed to be 

substantially larger than twice the number of accurately desired harmonics IpI. 

P 
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conclusion 

It has been shown that the traditional definition of the one-component trans- 
mission error is unsuitable for accurately characterizing the vibratory excitation 

arising from meshing pairs of spiral bevel gears. A three-component generalized 
transmission error definition was introduced that is made up of two orthogonal 

translational components and one rotational component of relative displacement of 
the gears with respect to their perfect spherical involute counterparts. All 

displacements that contribute to these three transmission error components take 
place in the plane of tooth contact. A transformation of coordinates, equations 

(2 .10 )  through (2.131, was derived that relates the three generalized transmission 

error components to the six degree-of-freedom deviations in the positions of the 

gear shaft centerlines from the positions occupied by their perfect spherical 

involute counterparts. The methodology is applicable to bevel gear pairs whose 

actual surface of tooth contact is reasonably well approximated by a plane surface 
passing through the point occupied by the apexes of the two pitch cones of the 
mating gears. 

In the absence of friction, the forces transmitted by the meshing teeth can be 
characterized by two orthogonal force components in the plane of tooth contact and 
one torque component, where the vector describing this torque component is normal to 

the plane of contact. Equations were derived that relate the three generalized 
transmission error components to the above-mentioned three generalized mesh force 

components [equations ( 3 . 3 7 )  through (3.3911. These equations include contributions 
to the transmission error components arising from elastic deformations of the teeth 

, and gear bodies, and contributions from deviations of the running surfaces of the 
teeth from equispaced perfect spherical involute surfaces. A method was described 

for incorporating these equations into the equations of motion of a gear system. 

When the inertial forces of a meshing gear pair and bearing supports are 
ignored, the three generalized mesh force components are determined by the tooth/ 

gearbody stiffnesses, deviations of the tooth running surfaces from equispaced 
perfect spherical involute surfaces, gearshaft bearing support flexibilities, devia- 

tions of the bearing centerlines from the positions occupied by the shaft center- 
lines of rigid perfect spherical involute gears, and the shaft input torque. 

Equations were derived providing the three generalized mesh force components in 
terms of the above-described quantities [equations ( 4 . 2 4 )  and (4 .19 )  I The three 
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components of the generalized static transmission error are predicted by equations 

( 3 . 3 7 )  through ( 3 . 3 9 )  or equation ( 3 . 4 4 )  when the generalized force components 
provided by equations ( 4 . 2 4 )  and ( 4 . 1 9 )  are used in their evaluation. 

Finally, a method was developed for computing the positions of the endpoints of 

the lines of tooth contact in the plane of contact. These endpoint positions are 

needed for evaluation of integrals that are required to evaluate coefficients in the 
above-mentioned equations. The computational procedure developed in the last sec- 

tion provides the three components of the generalized static transmission error at a 
set of equispaced points taken over one tooth spacing period of the rotational 

positions of the gears. Equations ( 6 . 8 )  and ( 6 . 9 )  may be employed to provide a 
smooth interpolation between such points for each of the three generalized trans- 
mission error components. When the running surfaces and stiffnesses of all teeth on 
each gear of a meshing pair are the same, equation ( 6 . 9 )  may be used to provide the 

Fourier series coefficients of the tooth meshing harmonics of each of the three 
generalized transmission error components. 



APPENDIX A 

DERIVATION OF EXPRESSION FOR GENERALIZED TRANSKISSION ERROR IN TEm OF 
GEAR DISPLACEMENTS AT SBbFT CENTERLINES 

( * >  ( - 1  ( 0 )  in We first express the gear body shaft centerline translations x1 , x, , x3 

The y coordinates are obtained by a the Y1 9 Y2r Y3 coordinates shown in Fig. 6.  

rotation about the x:*’ axis through the angle y ( * I  
b e  The common plane of the 

, y,, and y3 axes is shown in Fig. 17(a), from which i t  follows directly ( -1  ( -1  
x2 ’ x3 
that 

Y1 = x1 

y, = x cosy - x3siny 
2 b  b 

b ’  
y3 = x2siny + x3cosy 

b 

or in matrix notion, 

where the first line in equation ( A l )  is a consequence of the fact that the rotation 

was taken about the x:*’ axis as indicated i n  Fig. 6 ,  and where the superscripts 

(*  1 have been left off. 
z The z coordinates are obtained by a rotation 

about the y, axis through the angle v ( * ’ .  The common plane of the yl, y3, zl, and z3 

axes is shown in Fig. 17(b), from which it follows that 

Next, we express the y1 , y, , y3 coordinates in terms of the 
z2, z 3  coordinates shown in Fig. 6 .  1 ’  

z1 = ylcosu + y3sinu 

2, = Y, 

z = -ylsinu + y3cosu , 3 
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F I G .  17. (a) RESOLVING x2(.) AND x3(*) INTO y2 AND y3 COMPONENTS. 

(b) RESOLVING y1 AND y3 I N T O  z1 AND z3 COMPONENTS. 
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or 
cosv 0 sinv 

0 1 0 

-sinv 0 cosv 

(A4 1 

Substituting equation (A2) into the right-hand side of equation (A4) and multiplying 

the two coefficient matrices yields 

where the cosine and sine operators have been abbreviated by c ans s respectively 

(ref. 18, p. 106). 

We are concerned with the four possible gear pair configurations listed in Table 
1. The configuration represented by the first full line in Table 1 is illustrated in 

Fig. 3. 
changed from counterclockwise to clockwise, the plane of contact and lines of contact 
shown in Fig. 3 also apply to this configuration, which is represented by the second 
full line in Table 1. Thus, in the configurations described by the first two full 
lines in Table 1, gear (1) in Fig. 3 is represented by the first column in Table 1 

entitled "upper sign" and gear (2) in Fig. 3 is represented by the second column 

entitled "lower sign.'' Furthermore, the base cone and plane of contact configura- 
tions of both gears shown in Fig. 3 are represented by Fig. 6 which, when upright, 

represents gear (1) and, when upside down, represents gear (2). 

When gear (2) in Fig. 3 becomes the driver and its direction of rotation is 

I 

From Fig. 6 ,  we can see that gear body translations in the positive zl direction 
are "equivalent" to the addition of material to the running surfaces of perfect 

involute teeth. Hence, for gears (1) and (2), positive contributions to z1 are 
equivalent to negative contributions to the 5 

transmission error - compare Figs. 5 and 6. 
(2.13) that the last three elements in the middle row of the right-hand side of 

equation (2.13) are the negative values of the three elements in the top row of the 

component of the generalized t 
It follows from equations (2.10) through 
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coefficient matrix in the right-hand side of equation ( A 5 ) .  

translations in the z2 direction are normal to the plane of contact, the middle row 
of the coefficient matrix in equation ( A S )  contributes 

transmission error. 

Since gear body 

nothing to the generalized 

From Figs. 5 and 6, we can see that gear body translations in the z3 direction 
I provide the contributions to 5,. A careful examination of Figs. 3 and 6 shows that 

in the case of gear (1) gear body translations in the positive z3 direction are 

equivalent to the addition of material to the running surfaces of the teeth on gear 
(1); hence, in the case of gear (1) positive contributions to z3 are equivalent to 

negative contributions to the 5 component of the generatized transmission error. It 
follows from this fact and equations (2.10) through (2.13) that in the case of gear 

(1) the last three elements in the third row of the right-hand side of equation 
(2.13) are the negative values of the three elements in the bottom row of the co- 
efficient matrix in equation ( A 5 ) .  Further careful examination of Figs. 3 and 6 

shows that translations of the body of gear ( 2 )  in the positive z3 direction are 
equivalent to the removal of material from the running surfaces of the teeth on gear 

(2); hence, in the case of gear ( 2 )  positive contributions to z3 are equivalent to 
positive contributions to 5 . 
in the third row of the right-hand side of equation (2.13) are the same as the values 

of the three elements in the bottom row of 

These facts establish the sign conventions given by the first two full lines in 

Table 1. 

I 

r 

Thus, in the case of gear (2) the last three elements r 

I the coefficient matrix in equation’ ( A 5 ) .  

The sign conventions given by the last two full lines in Table 1 are established 
in a similar manner with the aid of Figs. 7 and 8. The counterpart to Fig. 6 in 

these considerations is shown in Fig. 8 which is the mirror image of Fig. 6 - i.e., 
the figure seen by looking through Fig. 6 flom its backside. From this fact, it 

follows that equation ( A 5 )  also is valid for the gearing configuration shown in Fig. 
7. 
can be derived from equation ( A 5 )  and Figs. 7 and 8. Furthermore, from the 

applicability of Fig. 8 to the configurations described by the last two full lines in 
Table 1 it follows from equation ( A 5 )  that the last three elements in the second row 
of the right-hand side of equation (2.13) also are applicable to the configurations 

described by the last two full lines in Table 1. 

I Consequently, the sign conventions given by the last two full lines in Table 1 
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We turn now to the four nonzero elements in the upper left-hand corner of the 

matrix in equation (2.13). 
nonzero elements in the first row represent the coefficients of p 2  

respectively, in their contributions to p ( x ) .  

convention for p(x) illustrated in Fig. 5 ,  we can readily see from Figs. 6 and 18 
that the contribution to p ( x )  from gear ( 0 )  is p2 ( 0  1 cosy ( 0 )  - p3 ( 0 )  siny;.), from 

which the first row of the matrix in equation (2.13) follows directly. The first two 

From equations (2.10) through (2.131, we see that the two 
( 0 )  ( - 1  

and p g  , 
Taking into account the sign 

b 

nonzero elements in the second row of the matrix 

t contributions of these rotation components to 5 

origin through the distance ro from cone apex to 

in equation (2.13) represent the 

that arise from the shift of the 
the point 0 on the zone of contact - 

centerline shown in Fig. 6 .  

sign convection illustrated in Fig. 5 .  

The signs of these two elements are a consequence of the 

A similar analysis of Fig. 8, which applies to the gearing configuration shown 
in Fig. 7 and to the last two full rows in Table 1, shows that the four nonzero 
elements in the upper left-hand corner of the matrix in equation (2.13) also apply to 
the configurations described by the last two full rows in Table 1. 
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FIG. 18. RESOLVING (SMALL) ROTATION VECTORS AND pi*) INTO COMPONENTS 
PERPENDICULAR AND PARALLEL TO THE PLANE OF CONTACT. THE PLANE OF 

( 0 )  ( 0 )  CONTAINS THE x2 , x3 , y2 AND y3 AXES SHOWN IN FIG. 6.  
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APPENDIX B 

DEFINITIONS AND INTEGRAL EQUATIONS FOR LOCAL TOOTB-PAIR STIFFNESSES K(m)(x,p) 
xi 

Let kj(v,v';x) denote the composite deformation from both teeth at a point v on 
the line of contact of tooth pair j due to a 

line of contact, where force and deformation 

to the tooth surfaces and, therefore, in the 

position of the zone of contact as described 

unit force applied at point v' on the 
both are measured in a direction normal 
plane of contact, and x denotes the 

by equation (2.8). The influence func- 

tion kj (v ,v' ;XI is assumed to include bending, shear, and Hertzian deformation 
components of both meshing teeth, as well as the components arising from deformations 

of the bodies of both meshing gears. 
assumed to be applied with uniform intensity to a circular area of diameter equal to 

the width of the contact line between the two gear teeth. Since the Hertzian 
deformation component of real teeth is a (weakly) nonlinear function of loading 

because of dependence of the width of the contact line on loading, specification of 

the area of applied force implies that our influence function is defined for a given 
nominal loading condition. The deformation u'(v;x) at point v caused by a lineal 
force density pj(v';x), where v and 
in terms of kj(v,v';x) by the line integral 

The unit force used to define k (v,v';x) is j 

j 
are on the line of contact, can be expressed 

where dv' denotes differential distance measured along the line of contact and where 

the integral is taken over the portion of the line of contact contained in the zone 
of contact. 

Equation (Bl) may be regarded as a Fredholm integral equation of the first kind 
for the lineal force density p (v';x). We may formally invert (ref. 23, pp. 4 - 9 ,  

351-352) equation (Bl) to yield 
j 

where k-l(v,v';x) is the inverse of k (v,v';x). 
j 3 

nj We shall consider K(t)(x,y) first. The differential force increments dW 
nj 

normal to the line of contact are related to the force density p (v;x) by j 
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dW = p.(v;x)dv . (B3) nj J 

From equations (3.5), (3.71, and (B3) we can express the contribution from tooth pair 

j to the total tangential force Wt illustrated in Fig. 4 by 

where y 
expressed as a function of distance v measured along the line of contact of tooth 
pair j. 

is an abbreviation for the coordinate y illustrated in Figs. 3 to 5 
V 

From equation (3.31, we have 

hence, v can be expressed as a function of y by the indefinite integral 

where C might be chosen by requiring v 
zone of contact position x, it is obvious from Figs. 3 to 5 that the function 

v = v(y) also determines the inverse function y 
in equation ( B 4 ) .  

to be zero at y = 0. For a given value of 
Y 

= y(v) which is the function used 
Y V 

Inserting equation (B2) into equation (B4) and using dv' = secJlb(y)dy from 

equation (BS), we have 
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where in the last line we have considered v '  to be the function of y determined by 

equation ( B 6 ) .  

contact, we have 
Since u'(v';x) and u (x,y) both are measured normal to the line of j Y  Ti 

hence, requiring that equations (3 .13 )  and ( B 7 )  represent identical expressions for 

arbitrary deformations %j(x,y), we must have 

which is the definition of the local tooth-pair stiffness K(t)(x,y) per unit length 

of line of contact. 
the full length of line of contact of tooth pair j at zone of contact position x. 

nj 
The integral with respect to v in equation ( B 9 )  is taken over 

It is not necessary to determine the inverse influence function k-l(v,v';x) in 
j 

order to evaluate the local tooth-pair stiffness K(t)(x,y). 

influence function k (v  ,v '  ;x) (Maxwell's reciprocal theorem) implies that k-l (v ,v ' ;XI 
possesses the same symmetry [ 2 3 ,  p. 91 - i.e., 

The symmetry of the 
nj 

j j 

Utilizing the property ( B 1 0 )  in equation (B9) yields 

which is of the same general form as equation ( B 2 ) .  Let us define 

which, according to equations ( B 2 )  and ( B l l ) ,  are a deformation/force density pair 

that satisfy equations ( B l )  and ( B 2 ) .  

solution P (v';x) = p 

u'(v;x) = u' (v;x) given by equation ( B 1 2 )  yields the local tooth-pair stiffness 

It follows, then, from equation ( B l )  that the - 
(v';x) to the integral equation ( B l )  with left-hand side - j Y  tj Y 

j t j 
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where the function v '  = v'(y) is determined by equation (B6). 
Y 

The situation with regard to the local tooth-pair stiffness K(r)(x,y) associated 
nj 

with the radial force component Wrj(x> FS completely analogous to that above for 
K(t)(x,y). 

instead of equation (B9), the definition 

Using equations (3.6), (3.8), (3.141, and (B3), we obtain in this case, 
n j 

The local tooth-pair stiffness K(f)(x,y) can be obtained from the solution 

p.(v';x) = p .(v';x) of the integral equation (Bl) using for its left-hand side 
u!(v;x) = u' (v;x) where 

- nJ 
J Y  rJ Y 
J rj 

from which one obtains K(r)(x,y) & 
nj 

where the function v '  = v'(y) is determined by equation (B6). 
Y 

The situation with regard to the local tooth-pair stiffness K(p) (x,y) appearing nj 
in equation (3.16) is slightly more complicated. 

equation (3.9) and then equation (B2) into the resulting expression yields 

Inserting equation (B3) into 

T . (XI = - I h(x,yv) I k-l (v ,v '  ;x)uj (v ' ;x)dv 'dv 
V '  j V 

J 
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where, in the first line the original integral over y in equation (3.9) has been 
transformed into an integral over v ,  and in the last line the integral over v '  in the 

second line has been transformed into an integral over y and equations (B5) and (B8) 

have been used. Substituting equation (3.15) into equation (B19) yields 

where the definition (B9) has been used in going to the second expression. The first 

lines of equations (3.16) and (B20) are identical. Thus, comparing the second lines 

of these two equations, we must have 

or 
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in order that equations (3.16) and (B20) represent identical expressions for 

arbitrary deformations sj(x,y). 
taken over the full length of line of contact of tooth pair j at zone of contact 

position X. 

The integral with respect to v in equation (B22) is 

To derive the integral equation whose solution yields K(P)(x,y), we apply the 
nj 

symmetry of equation (B10) to equation (B22) which gives 

which is of the same general form as equation (B2). 
(B2), and (B23) that the local tooth-pair stiffness K(')(x,y) can be obtained from 

the solution p (v';x) = p 

hand side u'(u;x) = u' (v ,x) where 

It follows from equations (Bl), 

- nj 
(v';x) of the integral equation (Bl)*using for its left- 

j Y  Pj Y 
j uj 

from which one obtains K(P)(x,y) 
nj 

where the function v '  = v'(y) ) 
Y 
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APPENDIX c 

DERIVATION OF EXPRESSION FOR h(x,y) GIVEN BY EQUATION (3.15) 

From Fig. 19 and the  f a c t  t h a t  t h e  sum of t he  i n t e r i o r  angles  of a t r i a n g l e  

is II rad ians ,  we have 

(c1)  y = " - ( ; - $ b ) - A j = q + $ b - A  ll . 
j 

Applying the  l a w  of s ines  t o  t h e  same t r i a n g l e  i n  Fig. 19 and using equat ion (C l ) ,  w e  

f i n d  

However, 

s in (R  2 - $b) = COS$ b 

and 

Combining equat ions (C3) and (C4) with equation (C2) g ives  

o r  

Furthermore, from Fig. 19 and equation (C l ) ,  w e  have 

= cos($b-'j) 0 
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FIG. 19. GEOMETRY REQUIRED FOR DERIVATION OF EXPRESSION FOR h ( x , y ) *  
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Combining equations (C6) and (C7) yields the desired relationship f o r  h: 

h = rotos($ -A ) - (ro-y)cos$b . 
b j  
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APPENDIX D 

INVERSION OF THE HESH STIFFNESS MATRIX K(x) 

From equations (2.10) and (3.37) through (3.421, it follows that the coefficient 

matrix K(x) in equation (3.40) can be written as 

a2 

K(x) = rl b, 

c3 ' 0 c1 

when the terms in the matrix (Dl) are appropriately identifed. Expressing the 

inverse C(x) of K(x) in terms of the cofactors (ref. 24, p. 17) of the matrix (Dl), 
it can be shown in a straightforward manner that the inverse of the matrix (D1) can 

be expressed as 

alb2-a2bl "1 , -a2 '3 

al '3 

a2 c1 

R1(x) 5 C(x) 

where the determinant lKl of the matrix (Dl) is 



APPENDIX E 

DERIVATION OF EXPRESSION FOR MESE FORCE CowPoNEHTS IN GEAB COORDINATE SYSTEM 

We require the transformation 

that gives the three components x,"), i = 1,2,3 of a vector originally expressed in 
A 

(' ) coordinate systems and z i i terms of the components z ( ' I ,  i = 1,2,3 where the x i 
are illustrated in Fig. 12 or its mirror image, Fig. 13. The inverse of this 

transformation normally would be expressed as 

where [ a .  ("3' is the inverse of the matrix [ t (*  '1. However, since both the 

coordinate systems are orthogonal, we have (ref. 18, p. 103) i ( * I  and z i X 

where [ a  - ( ' ) I  is the transpose of the matrix [E ( 0  '1 . From equations (El) through (E3) 
and equation (A5), it follows that 

0 
(.) 1 -sv 

( 0 )  ( 0 )  1 cu ( 0 )  ( 0 )  ( 0 )  

sv 'SY qb 

where c and s are abbreviations for cosine and sine operations as in equation (4.5). 

are illustrated in Figs. 12 and 13. Using equation (E4), The angles v(* and y 

one can readily verify that [ a . " ' ]  [X ] = [I] , where [I] is the identity matrix. 0 b 

Let We (. denote the six-component generalized force column matrix or vector 
described in the zi, i = 1,2,3 coordinate system analogous to the generalized force 

vector Q(' defined by equation (4.3) that describes the three torque components and 
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three force components applied to gear ( 0 )  by its mating gear in the x (*),i = 1,2,3 
coordinate system. 

i 
Then Q(') can be obtained from W by the transformation, z 

(E5 

(E6 

is obtained from equation (E4): ( 0 )  where the matrix GI 

0 ( 0  cv 0 0 

0 0 

0 0 0 

cv ( 0  0 ( 0  -sv 0 0 0 

0 0 0 

0 0 0 

The six-component generalized force vector W ( * )  can be obtained from the three- 
component generalized mesh force vector W defined by equation (4.1) by a further 
matrix transformation, 

e 

(E7 

which, when combined with equation (E5), yields 

where 

( ' I ,  and G'O) for the various gearing con- ' G2 We now evaluate the matrices GI 
figurations listed in Table 1. 
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Driver clockwise with left-hand spiral or follower counterclockwise with left- 

band spiral. 
meshing gear pair shown there. According to the upper portion of the figure, gear 

(1) has a left-hand spiral (ref. 19, p. 241). The components of the total resultant 

force exerted on gear (1) by its mate, gear (2), are shown in Fig. 4. These 

components Wt and Wr and the resultant torque T taken about the zone of contact 

center - 0 are shown in Fig. 12. The force components Wt and Wr shown in Fig. 12 lie in 
the plane of contact, which is the plane occupied by the zl, z3 and yl, y3 axes shown 
there. Torque T about the zone of contact center - 0 is represented as a vector normal 
to the plane of contact passing through - 0 with its direction governed by the right- 
hand rule, which is consistent with the sign convention described in the main text 

( * )  and the since the relationship between the positive direction of each p 

corresponding x (*I, i = 1,2,3 in Fig. 12 is governed by the right-hand rule. 

Gear (1) shown in Fig. 3 is the clockwise rotating driver of the 

i 

i 

(*I and To transform this mesh force system to the gear coordinate system x i 
( * I ,  i = 1,2,3 illustrated in Fig. 12, we must first express about the origin of p i  

the gear coordinate system located at the apex of the base cone shown in Fig. 12 the 

torque resulting from the total resultant mesh force. 
vector lies along the z2 axis, and has a value of T + r w 
z2 direction as shown in Fig. 12. 
respectively, positive in the positive z directions, it follows for this case that 
the vector W ‘* I, defined above, is 

This translated torque 
positive in the negative 

0 t’ 
Since Wt and Wr lie along the z1 and z3 axes, 

z 

From the definition (1) of W, and equations (E7) and (ElO), it follows directly 
that for this case the matrix G2(*)  is 
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- 

0 0 0  

-1 -r 0 

0 0 0  

0 1 0  

0 0 0  

0 0 1  

0 

. ( E l l )  

The validity of equation ( E l l )  can be established by multiplying G‘O I, equation 
( E l l ) ,  by W, equation ( 4 . 1 ) ,  which yields W as prescribed by equation (E7).  z 

Finally, the matrix G ( - )  is obtained by multiplying GI ( 0  1 and G2 ( 0 )  as indicated 
by equation (E9): 

0 

0 

0 

0 

0 

( 0 )  

roSYb 

( *  cv 

- 

0 

0 

0 

( *  -sv 

By comparing equations ( 4 . 5 )  and ( E l Z ) ,  one can see that 

when the upper signs in the third column in the right-hand side of equation ( 4 . 5 )  are 

used, which is consistent with the sign convention described in Table 1 .  

to equation (E8), equation (E13) verifies equation ( 4 . 4 )  for the case of a driving 

gear rotating clockwise with left-hand spiral teeth as illustrated in Fig. 3 .  

According 
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Let us turn now to the case of a follower gear rotating counterclockwise with 

left-hand spiral teeth. This situation is depicted by the follower gear (2) shown in 
Fig. 3 except that the spiral angle is opposite to that shown in the upper portion of 

the figure. For this configuration, the total resultant force exerted on the 
follower gear (2) by the driver gear (1) also is correctly depicted by Fig. 4, and 
the force system illustrated in Fig. 12 also correctly depicts the forces exerted on 
the follower gear (2) by the driver gear (1). From this fact, it follows that the 

results provided by equations (E121 and (E131 also apply to the case of a follower 

gear rotating counterclockwise as depicted in Fig. 3 ,  but with a left-hand spiral 
which is the opposite to that illustrated in the figure. 

Follower counterclockwise with right-hand spiral or driver clockwise with right- 

hand spiral. Gear (2) shown in Fig. 3 is the counterclockwise rotating follower of 
the meshing gear pair shown there. According to the upper portion of the figure, 

gear (2) has a right-hand spiral. Each force component Wt, Wr, and T exerted on gear 
(2) by its mate, gear (l), in this case is directed opposite to that shown in Fig. 4, 
since that figure illustrates the forces exerted on gear (1) by gear (2). 

The configuration shown in Fig. 12 is applicable to the follower gear (2), as 

well as the driver gear (1). 
and T acting on gear (2) are sketched on Fig. 6 ,  one obtains the force system 

illustrated in Fig. 12 with the exception ~~ that the component Wr is directed opposite 
I to that shown in Fig. 12. In this case, consequently, the six-component generalized 

When the above-described mesh force components Wt, Wr, 

force vector W 
components acting on the gear under consideration in the zi, i = 1,2,3 coordinate 
system, is equal to that given by equation (E10) with the exception that the sign of 

which expresses the three torque components and three force z 

Wr is reversed: 

0 

- ( .r+row ) 
0 

Wt 

0 

-W r 

' .  
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From the definition (4.1) and equations (E71 and (E14), it then follows that for the 

present case the matrix G2 ( - )  is - 
0 0 0  

-1 -r 0 

0 0 0  

0 1 0 

0 0 0  

0 0 -1 

0 

- 
which is the same as equation (Ell) except for the sign change in the lowermost 
element in the third column. 

The matrix G ( * )  is obtained by multiplying the matrices described by equations 

(E6) and (E151 as indicated by equation (E9). This multiplication yields 

By comparing equations 

0 0 

0 

0 

(4.5) and (E16), one can see that equation (E131 is valid in 

this case also when the lower signs in the third column in the right-hand side of 

equation (4.5) are used, which is consistent with the sign convention described in 

Table 1. 

We turn now to the case of a driver gear rotating clockwise but with right-hand 
This case is depicted by the driver, gear (l), shown in Fig. 3 except spiral teeth. 

that the spiral angle is opposite to that shown in the upper portion of the figure. 

For this case also, each force component Wt, W,, and T exerted on the driver, gear 
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( l ) ,  by the follower, gear ( 2 1 ,  is directed opposite to that shown in Fig. 4 .  Hence, 

for this case also, the system of forces exerted on the driver, gear ( l ) ,  by the 
follower, gear ( 2 ) ,  is represented by situation depicted in Fig. 12 ,  with the 

exception that the component Wr is directed opposite to that shown in Fig. 12. It 
follows that equations (E14),  (E15) ,  and (E161 are valid for this case also, which 

completes our proof of the validity of equations ( 4 . 4 )  and ( 4 . 5 )  for the last of the 

four gear element configurations enumerated in the first two lines of Table 1 .  

Driver counterclockwise with right-hand spiral or follower clockwise with right- 

hand spiral. Each of the remaining four gear element configuration possibilities 
delineated in the last two lines in Table 1 represents an exact mirror image of one 

of the four configurations in the first two lines of the table. Specifically, the 
third and fourth gear element configurations delineated in each of the two columns in 
Table 1 represent, respectively, the exact mirror images of the first and second gear 

element configurations in the same column. 

The configuration shown in Fig. 7 is the mirror image of that shown in Fig. 3.  

The case of a counterclockwise rotating driver with right-hand spiral teeth is 
illustrated by Gear ( 1 )  of Fig. 7 .  The case of a clockwise rotating follower with 

right-hand spiral teeth is represented by gear ( 2 )  of Fig. 7 ,  except that in this 
latter case the spiral angle is opposite to that shown in the upper portion of the 

figure. The forces exerted on the gear under consideration by its mating gear in 
each of these two cases are represented by the force system shown in Fig. 4 .  For 

both cases, this force system also is shown in Fig. 13. 

Figure 13 is an exact mirror image of Fig. 12. From Fig. 13, it follows that 

the expression for the generalized force vector Wz ( * )  also is given by equation (E101 

for the two gear element configurations under present consideration. Hence, the 

expressions given by equations ( E l l )  and (E12) for the matrices G2 

respectively, also are applicable to the present two cases, from which it follows 

that equations (E13),  ( 4 . 4 ) ,  and ( 4 . 5 )  also are verified when the upper signs in the 
third column in the right-hand side of equation ( 4 . 5 )  are used, which is consistent 

with the sign convention described in Table 1 .  However, it is important to recognize 
that for the present two cases, and the two to be described below, the sign 

convention for each i = 1 , 2 , 3  describing the relationship between each rotation 
(*I, and the displacement component xi (*I is governed ( *  I, and hence, component p 

by the left-hand rule, as may be seen in Fig. 8 or Fig. 3. 

(.) and G ( -1  , 

‘i i 
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Follower clocMse with left-hand spiral or driver counterclockwise with left- 

hand spiral. 
the second is represented by gear (1) of the same figure except that in this latter 

case the spiral angle is opposite to that shown in the upper portion of the figure. 

In each of these two cases, each of the force components exerted on the gear under 
consideration by its mating gear is directed opposite to that illustrated in Fig. 4 .  

These force components exerted on the gear under consideration are shown in Fig. 13 

except that, for the present two cases, the direction of Wr is opposite to that shown 
in Fig. 13. It follows that, for the present two cases, the generalized force 
vector W ( * )  is given by equation (E14); hence, the matrices $(*) and G(*) are given 
by equations (E15) and (E16), respectively. Therefore, equation (E13) is valid for 

these two cases when the lower signs in the third column in the right-hand side of 

equation (4.5) are used, which is consistent with the sign convention described in 
Table 1. 

The first of these two cases is represented by gear (2) of Fig. 7, and 

z 
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The definition (5.54) expresses Aj(x,yej) as 

But, 

1 L  
a b  - b a  = a b  (l-x) . 

1 2  
1 2  1 2  1 2  

Combining equations (Fl) and (F2) gives 

a b  
1 2  

bl 
b a -1 

g -I: - ( g  -g 1 lj o a 2j l j  
=(l-<) ;[ 1 

. (F3) 

1 
I From equation (F3) it is clear that if bl = 0 and (glj/b2) > 0, then Aj > 0. 
1 comparing equation (5.3) with equation (3.381, we see that b 
, from equations (3.36a) and (3.32a) may be seen always to be positive. 

it follows from equation (5.22) that glj always is positive; hence, (glj/b2) > 0. 
Therefore, it is necessary to show only that we can set bl = 0. 

By 
= "Kt)(x;Jlb) , which 

2 c- 1 
Furthermore, 

t 

The coordinate system we have used was devised to keep equations (3.37) and 

(3.38) relatively uncoupled. 
5, independently of the value of ,,. 

In fact, if bl = 0, equation (3.381, can be solved for 
From equations (5.3) and (3.38), it follows that 

' where the notation is described by equations (3.32g), (3.32d), (3.36g1, and (3.36d). 
-(t) The term K 

Therefore, the magnitude of the positive term r -(t) K 
(x;$~,X,) in equation (F4) is positive and independent of roo 

C-W-c) 
(x;$ , A  ) can be adjusted by 

o c-l(l-c) b j 
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-(t> changing the value of rO. The term K 
negative depending on the value of ro. 

(3.32g), (3.32d), and Fig. 11 shows that ro always can be chosen so that K 
(x;$bY X . )  is made negative with magnitude equal to r -(tl K 

set bl = 0. 
increase the value of bl. 

(x;$ ,A 1 can be either positive or 

-(t> 

yc-lc b j 
However, careful examination of equations 

yc-1 c 
(x;9 J.1, which wi 11 

0 d(1-c) b J 
Increasing ro will decrease the value of bl, and decreasing ro Will 

The value of ro controls the position of the origin of the coordinate y, as one 

can see fromFig. 11. 

coordinate y in the middle of the nominal contact range F, as shown in Fig. 11. 

This choice tends to keep the magnitude of bl very small, as careful examination of 
equations (3.32g1, (3.32d1, (3.3681, (3.36d1, (F41, and Fig. 11 will show. Thus, 

with the choice of ro shown in Fig. 11, we can expect Aj(x,yej) usually to be 
positive, requiring in these cases no readjustment in the value of ro. 

We have chosen the value of ro to position the origin of the 
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